Dookes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).
Google Scholar
Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).
Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
Google Scholar
Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).
Google Scholar
Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C. & Hua, X. How does climate change cause extinction?. Proc. Biol. Sci. 280, 20121890 (2013).
Google Scholar
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Chang. Biol. 20, 2221–2229 (2014).
Google Scholar
Chu, C. et al. Direct effects dominate responses to climate perturbations in grassland plant communities. Nat. Commun. 7, 11766 (2016).
Google Scholar
Gunderson, A. R., Tsukimura, B. & Stillman, J. H. Indirect effects of global change: From physiological and behavioral mechanisms to ecological consequences. Integr. Comp. Biol. 57, 48–54 (2017).
Google Scholar
Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).
Google Scholar
Farrer, E. C. et al. Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. J. Ecol. 103, 351–360 (2015).
Google Scholar
Sentis, A., Montoya, J. M. & Lurgi, M. Warming indirectly increases invasion success in food webs. Proc. R. Soc. B. 288, 1947 (2021).
Google Scholar
Ohgushi, T. Indirect interaction webs: Herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).
Google Scholar
Classen, A. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?. Ecosphere 6, 1–21 (2015).
Google Scholar
Van-der-Putten, W. H., Macel, M. & Visser, M. E. Predicting species distributions and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).
Google Scholar
Rudgers, J. A. et al. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).
Google Scholar
Deltedesco, E. et al. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 142, 1–12 (2020).
Google Scholar
Fahey, C., Koyama, A., Antunes, P. M., Dunfield, K. & Flory, S. L. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME 14, 1396–1409 (2020).
Google Scholar
Nuccio, E. E. et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 15, 1870–1881 (2013).
Google Scholar
Bennett, J. A. & Cahill, J. F. Fungal effects on plant–plant interactions contribute to grassland plant abundances: Evidence from the field. J. Ecol. 104, 755–764 (2016).
Google Scholar
Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).
Google Scholar
Inderjit, C. J. F. Linkages of plant–soil feedbacks and underlying invasion mechanisms. AoB Plants 7, 1–8 (2015).
Google Scholar
Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).
Google Scholar
Teh, S. Y. & Koh, H. L. Climate change and soil salinization: Impact on agriculture, water, and food security. IJAFP 2, 1–9 (2016).
White, E. Restore or retreat? Saltwater intrusion and coastal management in coastal wetlands. Ecosyst. Health Sustain. https://doi.org/10.1002/ehs2.1258 (2016).
Google Scholar
Donnolly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. PNAS 98, 14218–14223 (2001).
Google Scholar
Sharpe, P. J. & Baldwin, A. H. Tidal marsh plant community response to sea-level rise: A mesocosm study. Aquat. Bot. 101, 34–40 (2012).
Google Scholar
Birnbaum, C., Waryszak, P. & Farrer, E. C. Direct and indirect effects of climate change in coastal wetlands: Will climate change influence wetlands by affecting plant invasion?. Wetlands 59, 1–11 (2021).
Noto, A. E. & Shurin, J. B. Early stages of sea-level rise lead to decreased salt marsh plant diversity through stronger competition in Mediterranean climate marshes. PLoS ONE 12, 1–11 (2017).
Google Scholar
Stagg, C. L., Baustian, M. M., Perry, C. L., Carruthers, T. J. B. & Hall, C. T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 106, 655–670 (2017).
Google Scholar
Neubauer, S. C., Piehler, M. F., Smyth, A. R. & Franklin, R. B. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. Ecosystems 22, 912–928 (2019).
Google Scholar
Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME. 13, 836–846 (2019).
Google Scholar
Meyerson, L. A., Cronin, J. T. & Pysek, P. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 18, 2421–2431 (2016).
Google Scholar
Soares, M. A. et al. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol. Invasions 18, 2689–2702 (2016).
Google Scholar
Gonzalez, M., Baldwin, A. H., Maul, J. E. & Yarwood, S. A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME 14, 1943–1954 (2020).
Google Scholar
Farrer, E. C. et al. Plant and microbial impacts of an invasive species vary across an environmental gradient. J. Ecol. 109, 2163–2176 (2021).
Google Scholar
Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).
Google Scholar
Smith, L. M. & Reynolds, H. L. Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology 96, 2523–2532 (2015).
Google Scholar
Parepa, M., Schaffner, U. & Bossdorf, O. Help from underground: Soil biota facilitate knotweed invasion. Ecosphere 4, 1–11 (2013).
Google Scholar
Larios, L. & Suding, K. N. Competition and soil resource environment alter plant-soil feedbacks for native and exotic grasses. AoB Plants 7, 1–9 (2014).
Hoeksema, J. D. Ongoing coevolution in mycorrhizal interactions. New Phytol. 187, 286–300 (2010).
Google Scholar
Van der Heijden, M. G. A., Martin, F. M., Selosse, M. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
Google Scholar
Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1(116), 2018. https://doi.org/10.1038/s42003-018-0120-9 (2018).
Google Scholar
Remke, M. J., Johnson, N. C., Wright, J., Williamson, M. & Bowker, M. A. Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. J. Ecol. 109, 1210–1223 (2020).
Google Scholar
Farrer, E. C. & Suding, K. N. Teasing apart plant community responses to N enrichment: The roles of resource limitation, competition and soil microbes. Ecol. Lett. 19, 1287–1296 (2016).
Google Scholar
Hawkins, A. P. & Crawford, K. M. Interactions between plants and soil microbes may alter the relative importance of intraspecific and interspecific plant competition in a changing climate. AoB Plants. 10, 39. https://doi.org/10.1093/aobpla/ply039 (2018).
Google Scholar
Wu, Y. et al. Long-term nitrogen and sulfur deposition increased root-associated pathogen diversity and changed mutualistic fungal diversity in a boreal forest. Soil Biol. Biogeochem. 115, 108163. https://doi.org/10.1016/j.soilbio.2021.108163 (2021).
Google Scholar
Allen, W. J., Meyerson, L. A., Flick, A. J. & Cronin, J. T. Intraspecific variation in indirect plant–soil feedbacks influences a wetland plant invasion. Ecology 99, 1430–1440 (2018).
Google Scholar
Crawford, K. M. & Knight, T. M. Competition overwhelms the positive plant-soil feedback generated by an invasive plant. Oecologia 183, 211–220 (2017).
Google Scholar
Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).
Google Scholar
Uddin, M. N., Robinson, R. W., Buultjens, A., Al-Harun, M. A. Y. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).
Google Scholar
Howard, R. J. & Rafferty, P. S. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA. Environ. Exp. Bot. 56, 301–313 (2006).
Google Scholar
Visser, J. M., Sasser, C. E., Chabreck, R. H. & Linscombe, R. G. Marsh vegetation types of the Mississippi River Deltaic plain. Estuaries 21, 818–828 (1998).
Google Scholar
De Wit, C. T. & van den Bergh, J. P. Competition between herbage plants. NJAS 13, 212–221 (1965).
Google Scholar
R Core Team. In r: A Language and Environment for Statistical Computing; r foundation for statistical computing: Vienna, Austria (2017).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
Source: Ecology - nature.com