in

Saltwater intrusion indirectly intensifies Phragmites australis invasion via alteration of soil microbes

  • Dookes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).

    Article 

    Google Scholar 

  • Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).

    Article 

    Google Scholar 

  • Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).

    Article 

    Google Scholar 

  • Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C. & Hua, X. How does climate change cause extinction?. Proc. Biol. Sci. 280, 20121890 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Chang. Biol. 20, 2221–2229 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Chu, C. et al. Direct effects dominate responses to climate perturbations in grassland plant communities. Nat. Commun. 7, 11766 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gunderson, A. R., Tsukimura, B. & Stillman, J. H. Indirect effects of global change: From physiological and behavioral mechanisms to ecological consequences. Integr. Comp. Biol. 57, 48–54 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farrer, E. C. et al. Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. J. Ecol. 103, 351–360 (2015).

    CAS 
    Article 

    Google Scholar 

  • Sentis, A., Montoya, J. M. & Lurgi, M. Warming indirectly increases invasion success in food webs. Proc. R. Soc. B. 288, 1947 (2021).

    Article 

    Google Scholar 

  • Ohgushi, T. Indirect interaction webs: Herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).

    Article 

    Google Scholar 

  • Classen, A. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?. Ecosphere 6, 1–21 (2015).

    Article 

    Google Scholar 

  • Van-der-Putten, W. H., Macel, M. & Visser, M. E. Predicting species distributions and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).

    Article 

    Google Scholar 

  • Rudgers, J. A. et al. Climate disruption of plant-microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).

    Article 

    Google Scholar 

  • Deltedesco, E. et al. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 142, 1–12 (2020).

    Article 

    Google Scholar 

  • Fahey, C., Koyama, A., Antunes, P. M., Dunfield, K. & Flory, S. L. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME 14, 1396–1409 (2020).

    Article 

    Google Scholar 

  • Nuccio, E. E. et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ. Microbiol. 15, 1870–1881 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bennett, J. A. & Cahill, J. F. Fungal effects on plant–plant interactions contribute to grassland plant abundances: Evidence from the field. J. Ecol. 104, 755–764 (2016).

    Article 

    Google Scholar 

  • Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Inderjit, C. J. F. Linkages of plant–soil feedbacks and underlying invasion mechanisms. AoB Plants 7, 1–8 (2015).

    CAS 
    Article 

    Google Scholar 

  • Lekberg, Y. et al. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol. Lett. 21, 1268–1281 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Teh, S. Y. & Koh, H. L. Climate change and soil salinization: Impact on agriculture, water, and food security. IJAFP 2, 1–9 (2016).

    Google Scholar 

  • White, E. Restore or retreat? Saltwater intrusion and coastal management in coastal wetlands. Ecosyst. Health Sustain. https://doi.org/10.1002/ehs2.1258 (2016).

    Article 

    Google Scholar 

  • Donnolly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. PNAS 98, 14218–14223 (2001).

    ADS 
    Article 

    Google Scholar 

  • Sharpe, P. J. & Baldwin, A. H. Tidal marsh plant community response to sea-level rise: A mesocosm study. Aquat. Bot. 101, 34–40 (2012).

    Article 

    Google Scholar 

  • Birnbaum, C., Waryszak, P. & Farrer, E. C. Direct and indirect effects of climate change in coastal wetlands: Will climate change influence wetlands by affecting plant invasion?. Wetlands 59, 1–11 (2021).

    Google Scholar 

  • Noto, A. E. & Shurin, J. B. Early stages of sea-level rise lead to decreased salt marsh plant diversity through stronger competition in Mediterranean climate marshes. PLoS ONE 12, 1–11 (2017).

    Article 

    Google Scholar 

  • Stagg, C. L., Baustian, M. M., Perry, C. L., Carruthers, T. J. B. & Hall, C. T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 106, 655–670 (2017).

    Article 

    Google Scholar 

  • Neubauer, S. C., Piehler, M. F., Smyth, A. R. & Franklin, R. B. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. Ecosystems 22, 912–928 (2019).

    CAS 
    Article 

    Google Scholar 

  • Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME. 13, 836–846 (2019).

    CAS 
    Article 

    Google Scholar 

  • Meyerson, L. A., Cronin, J. T. & Pysek, P. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 18, 2421–2431 (2016).

    Article 

    Google Scholar 

  • Soares, M. A. et al. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol. Invasions 18, 2689–2702 (2016).

    Article 

    Google Scholar 

  • Gonzalez, M., Baldwin, A. H., Maul, J. E. & Yarwood, S. A. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME 14, 1943–1954 (2020).

    Article 

    Google Scholar 

  • Farrer, E. C. et al. Plant and microbial impacts of an invasive species vary across an environmental gradient. J. Ecol. 109, 2163–2176 (2021).

    Article 

    Google Scholar 

  • Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, L. M. & Reynolds, H. L. Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology 96, 2523–2532 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Parepa, M., Schaffner, U. & Bossdorf, O. Help from underground: Soil biota facilitate knotweed invasion. Ecosphere 4, 1–11 (2013).

    Article 

    Google Scholar 

  • Larios, L. & Suding, K. N. Competition and soil resource environment alter plant-soil feedbacks for native and exotic grasses. AoB Plants 7, 1–9 (2014).

    Google Scholar 

  • Hoeksema, J. D. Ongoing coevolution in mycorrhizal interactions. New Phytol. 187, 286–300 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Van der Heijden, M. G. A., Martin, F. M., Selosse, M. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1(116), 2018. https://doi.org/10.1038/s42003-018-0120-9 (2018).

    Article 

    Google Scholar 

  • Remke, M. J., Johnson, N. C., Wright, J., Williamson, M. & Bowker, M. A. Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. J. Ecol. 109, 1210–1223 (2020).

    Article 

    Google Scholar 

  • Farrer, E. C. & Suding, K. N. Teasing apart plant community responses to N enrichment: The roles of resource limitation, competition and soil microbes. Ecol. Lett. 19, 1287–1296 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Hawkins, A. P. & Crawford, K. M. Interactions between plants and soil microbes may alter the relative importance of intraspecific and interspecific plant competition in a changing climate. AoB Plants. 10, 39. https://doi.org/10.1093/aobpla/ply039 (2018).

    Article 

    Google Scholar 

  • Wu, Y. et al. Long-term nitrogen and sulfur deposition increased root-associated pathogen diversity and changed mutualistic fungal diversity in a boreal forest. Soil Biol. Biogeochem. 115, 108163. https://doi.org/10.1016/j.soilbio.2021.108163 (2021).

    CAS 
    Article 

    Google Scholar 

  • Allen, W. J., Meyerson, L. A., Flick, A. J. & Cronin, J. T. Intraspecific variation in indirect plant–soil feedbacks influences a wetland plant invasion. Ecology 99, 1430–1440 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Crawford, K. M. & Knight, T. M. Competition overwhelms the positive plant-soil feedback generated by an invasive plant. Oecologia 183, 211–220 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Bertness, M. D. & Shumway, S. W. Competition and facilitation in marsh plants. Am. Nat. 142, 718–724 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Uddin, M. N., Robinson, R. W., Buultjens, A., Al-Harun, M. A. Y. & Shampa, S. H. Role of allelopathy of Phragmites australis in its invasion processes. J. Exp. Mar. Biol. Ecol. 486, 237–244 (2017).

    Article 

    Google Scholar 

  • Howard, R. J. & Rafferty, P. S. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA. Environ. Exp. Bot. 56, 301–313 (2006).

    Article 

    Google Scholar 

  • Visser, J. M., Sasser, C. E., Chabreck, R. H. & Linscombe, R. G. Marsh vegetation types of the Mississippi River Deltaic plain. Estuaries 21, 818–828 (1998).

    Article 

    Google Scholar 

  • De Wit, C. T. & van den Bergh, J. P. Competition between herbage plants. NJAS 13, 212–221 (1965).

    Article 

    Google Scholar 

  • R Core Team. In r: A Language and Environment for Statistical Computing; r foundation for statistical computing: Vienna, Austria (2017).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    Small eddies play a big role in feeding ocean microbes

    Scientists chart how exercise affects the body