in

Sap flow of sweet cherry reveals distinct effects of humidity and wind under rain covered and netted protected cropping systems

[adace-ad id="91168"]
  • Jensen, M. H. & Malter, A. J. Protected Agriculture—A Global Review. World Bank Technical Paper Number 253 (World Bank, 1995).

    Google Scholar 

  • Meli, T., Riesen, W. & Widmer, A. Protection of sweet cherry hedgerows with polyethylene films. Acta Hortic. 155, 463–467 (1984).

    Article 

    Google Scholar 

  • Janick, J. (ed.) Horticultural Reviews Vol. 30, 115–162 (Wiley, 2004).

    Google Scholar 

  • Janke, R. R., Altamimi, M. E. & Khan, M. The use of high tunnels to produce fruit and vegetable crops in North America. Agric. Sci. 08, 692–715. https://doi.org/10.4236/as.2017.87052 (2017).

    Article 

    Google Scholar 

  • Alarcon, J. J. et al. Sap flow as an indicator of transpiration and the water status of young apricot trees. Plant Soil 227, 77–85. https://doi.org/10.1023/A:1026520111166 (2000).

    Article 
    CAS 

    Google Scholar 

  • Ferrara, G. & Flore, J. Comparison between different methods for measuring tranpiration in potted apple trees. Biol. Plant. 46, 41–47 (2003).

    Article 

    Google Scholar 

  • Nicolás, E., Torrecillas, A., Amico, J. D. & Alarcón, J. J. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. J. Plant Physiol. 162, 439–447. https://doi.org/10.1016/j.jplph.2004.05.014 (2005).

    Article 
    CAS 

    Google Scholar 

  • Green, S. & Romero, R. Can we improve heat-pulse to measure low and reverse flows. Acta Hortic. 951, 19–30 (2012).

    Article 

    Google Scholar 

  • Noitsakis, B. & Nastis, A. S. Seasonal changes of water potential, stomatal conductance and transpiration in the leaf of cherry trees grown in shelter. CIHEAM 12, 267–270 (1995).

    Google Scholar 

  • Lang, G. A. High tunnel tree fruit production: The final frontier. HortTechnology 19, 50–55 (2009).

    Article 

    Google Scholar 

  • Lang, G. A. Tree fruit production in high tunnels: Current status and case study of sweet cherries. Acta Hortic. 987, 73–82 (2013).

    Article 

    Google Scholar 

  • Meland, M., Frøynes, O. & Kaiser, C. High tunnel production systems improve yields and fruit size of sweet cherry. Acta Hortic. 1161, 117–124. https://doi.org/10.17660/ActaHortic.2017.1161.20 (2017).

    Article 

    Google Scholar 

  • Cohen, S., Moreshet, S., Guillou, L. L., Simon, J.-C. & Cohen, M. Response of citrus trees to modified radiation regime in semi-arid conditions. J. Exp. Bot. 48, 35–44. https://doi.org/10.1093/jxb/48.1.35 (1997).

    Article 
    CAS 

    Google Scholar 

  • Zeppel, M., Murray, B. R., Barton, C. & Eamus, D. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Funct. Plant Biol. 31, 461–470 (2004).

    Article 

    Google Scholar 

  • Bonada, M., Buesa, I., Moran, M. A. & Sadras, V. O. Interactive effects of warming and water deficit on Shiraz vine transpiration in the Barossa Valley, Australia. OENO One 52, 189–202. https://doi.org/10.20870/oeno-one.2018.52.2.2141 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, K. Y., Kellomaki, S., Zha, T. & Peltola, H. Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. J. Exp. Bot. 56, 155–165. https://doi.org/10.1093/jxb/eri013 (2005).

    Article 
    CAS 

    Google Scholar 

  • Laplace, S., Chu, C. & Kume, S. Wind speed response of sap flow in five subtropical trees based on wind tunnel experiments. Br. J. Environ. Clim. Change 3, 160–171. https://doi.org/10.9734/BJECC/2013/3842 (2013).

    Article 

    Google Scholar 

  • Kellomäki, S. & Wang, K. Y. Sap flow in Scots pine growing under conditions of year-round carbon dioxide enrichment and temperature elevation. Plant, Cell Environ. 21, 969–981. https://doi.org/10.1046/j.1365-3040.1998.00352.x (2002).

    Article 

    Google Scholar 

  • Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, 3–6. https://doi.org/10.1080/15592324.2017.1356534 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wu, J. et al. Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban For. Urban Green. 56, 126800. https://doi.org/10.1016/j.ufug.2020.126800 (2020).

    Article 

    Google Scholar 

  • Chen, Y.-J. et al. Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiol. 36, 736–747. https://doi.org/10.1093/treephys/tpv103 (2015).

    Article 

    Google Scholar 

  • Marshall, D. C. Measurment of sap flow in conifers by heat transport. Plant Physiol. 33, 385–396 (1958).

    Article 
    CAS 

    Google Scholar 

  • Swanson, R. H. & Whitfield, W. A. A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 32, 221–239 (1981).

    Article 

    Google Scholar 

  • Green, S., Clothier, B. & Jardine, B. Theory and practical application of heat pulse to measure sap flow. Am. Soc. Agron. 95, 1371–1379 (2003).

    Article 

    Google Scholar 

  • Goodwin, I., Cornwall, D. & Green, S. R. Pear transpiration and basal crop coefficients estimated by sap flow. Acta Hortic. 951, 183–190. https://doi.org/10.17660/ActaHortic.2012.951.22 (2012).

    Article 

    Google Scholar 

  • Fernandez, J. E. et al. Heat-pulse measurements of sap flow in olives for automating irrigation, tests, root flow and diagnostics of water stress. Agric. Water Manag. 51, 99–123 (2001).

    Article 

    Google Scholar 

  • Green, S. R. & Clothier, B. Water use of kiwifruit vines and apple trees by the heat-pulse technique. J. Exp. Bot. 39, 115–123 (1988).

    Article 

    Google Scholar 

  • Green, S. R. et al. Measurement of sap flow in young apple trees using the average gradient heat-pulse method. Acta Hortic. 1222, 173–178. https://doi.org/10.17660/ActaHortic.2018.1222.35 (2018).

    Article 

    Google Scholar 

  • Green, S., Clothier, B. & Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 846, 95–104 (2009).

    Article 

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56 300 (FAO, 1998).

    Google Scholar 

  • R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2010).

  • Hastie, T. & Tibshirani, R. Generalized Additive Models (Chapman and Hall/CRC, 1990).

    MATH 

    Google Scholar 

  • Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Sams, C. E. & Flore, J. A. The influence of leaf age, leaf position on the shoot, and environmental variables on net photosynthetic rate of sour cherry (Prunus cerasus L. ’Montmorency’). J. Am. Soc. Hortic. Sci. 107, 339–344 (1982).

    Article 

    Google Scholar 

  • Wallberg, B. N. & Sagredo, K. X. Vegetative and reproductive development of “Lapins” sweet cherry trees under rain protective cropping. Int. Soc. Hortic. Sci. 1058, 411–417 (2014).

    Google Scholar 

  • Lang, G. A. Growing sweet cherries under plastic covers and tunnels: Physiological aspects and practical considerations. Acta Hortic. 1020, 303–312. https://doi.org/10.17660/ActaHortic.2014.1020.43 (2014).

    Article 

    Google Scholar 

  • Goodwin, I., McClymont, L., Turpin, S. & Darbyshire, R. Effectiveness of netting in decreasing fruit surface temperature and sunburn damage of red-blushed pear. N. Z. J. Crop. Hortic. Sci. 46, 334–345. https://doi.org/10.1080/01140671.2018.1432492 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mika, A., Buler, Z., Wójcik, K. & Konopacka, D. Influence of the plastic cover on the protection of sweet cherry fruit against cracking, on the microclimate under cover and fruit quality. J. Hortic. Res. 27, 31–38. https://doi.org/10.2478/johr-2019-0018 (2019).

    Article 
    CAS 

    Google Scholar 

  • Blanco, V., Zoffoli, J. P. & Ayala, M. High tunnel cultivation of sweet cherry (Prunus avium L.): Physiological and production variables. Sci. Hortic. 251, 108–117. https://doi.org/10.1016/j.scienta.2019.02.023 (2019).

    Article 

    Google Scholar 

  • Sams, C. E. & Flore, J. A. Net photosynthetic rate of sour cherry (Prunus cerasus L. ‘Montmorency’) during the growing season with particular reference to fruiting. Photosynth. Res. 4, 307–316. https://doi.org/10.1007/BF00054139 (1983).

    Article 

    Google Scholar 

  • Lange, O. L., Schulze, E. D., Evenari, M., Kappen, L. & Buschbom, U. The temperature-related photosynthesis capacity of plants under desert conditions. Oecologia 17, 97–110. https://doi.org/10.1007/BF00346273 (1974).

    Article 
    CAS 

    Google Scholar 

  • Beckman, T. G., Perry, R. L. & Flore, J. A. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. HortScience 27, 1297. https://doi.org/10.21273/hortsci.27.12.1297 (1992).

    Article 

    Google Scholar 

  • Lei, H., Zhi-Shan, Z. & Xin-Rong, L. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, China. Hydrol. Processes 24, 1248–1253. https://doi.org/10.1002/hyp.7584 (2010).

    Article 

    Google Scholar 

  • Juhász, A., Hrotko, K. & Tokei, L. Air and Water Components of the Environment, 76–82.

  • Ravi, S. & D’Odorico, P. A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys. Res. Lett. 32, 023675. https://doi.org/10.1029/2005gl023675 (2005).

    Article 

    Google Scholar 

  • Holmes, M. & Farrell, D. South African Avocado Growers Association Yearbook Vol. 16, 59–64 (1993).

  • Jones, H. G. Plants and Microclimate: A quantitative Approach to Environmental Plant Physiology 3rd edn. (Cambridge University Press, 2014).

    Google Scholar 

  • Juhász, Á., Sepsi, P., Nagy, Z., Tőkei, L. & Hrotkó, K. Water consumption of sweet cherry trees estimated by sap flow measurement. Sci. Hortic. 164, 41–49. https://doi.org/10.1016/j.scienta.2013.08.022 (2013).

    Article 

    Google Scholar 

  • Gussakovsky, E. E., Salomon, E., Ratner, K., Shahak, Y. & Driesenaar, A. R. J. Photoinhibition (light stress) in citrus leaves. Acta Hortic. 349, 139–143 (1993).

    Article 

    Google Scholar 

  • Grappadelli, L. C. & Lakso, A. N. Is maximizing orchard light interception always the best choice? Acta Hortic. 732, 507–518. https://doi.org/10.17660/ActaHortic.2007.732.77 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

    World leaders must step up to put biodiversity deal on path to success