in

Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations

[adace-ad id="91168"]
  • ACIA (2004) Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schonswetter P et al. (2012) Genetic consequences of climate change for northern plants. Proc R Soc B-Biol Sci 279:2042–2051

    Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Archer FI, Adams PE, Schneiders BB (2017) strataG: an R package for manipulating, summarizing and analysing population genetic data. Mol Ecol Resour 17:5–11

    CAS 
    PubMed 

    Google Scholar 

  • Arenas M, Ray N, Currat M, Excoffier L (2011) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29:207–218

    PubMed 

    Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Soc Series B 57:289–300

  • BirdLife International (2018). Pagophila eburnea. The IUCN Red List of Threatened Species 2018: e.T22694473A132555020. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694473A132555020.en. Downloaded on11 June 2020

  • Boertmann D, Petersen IK, Nielsen HH (2020) Ivory Gull population status in Greenland 2019. Dan Orn Foren Tidsskr 114:141–150

    Google Scholar 

  • Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F (2016) Inferring population size history from large samples of genome-wide molecular data – an approximate Bayesian computation approach. PLOS Genet 12:1–36

    Google Scholar 

  • Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M, Parmentier F-JW et al. (2019) Key indicators of Arctic climate change: 1971–2017. Environ Res Lett 14:045010

    CAS 

    Google Scholar 

  • Braune BM, Mallory ML, Gilchrist HG (2006) Elevated mercury levels in a declining population of ivory gulls in the Canadian Arctic. Mar Pollut Bull 52:978–982

    CAS 
    PubMed 

    Google Scholar 

  • Broquet T, Angelone S, Jaquiéry J, Joly P, Léna JP, Lengagne T et al. (2010) Genetic bottlenecks driven by population disconnection. Conserv Biol 24:1596–1605

    PubMed 

    Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    CAS 
    PubMed 

    Google Scholar 

  • Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA (2010) The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:983–995

    PubMed 
    PubMed Central 

    Google Scholar 

  • Collevatti RG, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genet Genomes 7:1237–1247

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cotto O, Schmid M, Guillaume F (2020) Nemo-age: spatially explicit simulations of eco-evolutionary dynamics in stage-structured populations under changing environments. Methods Ecol Evol 11:1227–1236

    Google Scholar 

  • Cubaynes S, Doherty PF, Schreiber EA, Gimenez O (2011) To breed or not to breed: a seabird’s response to extreme climatic events. Biol Lett 7:303–306

    PubMed 

    Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994). Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91: 3166–3170

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    CAS 
    PubMed 

    Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    CAS 
    PubMed 

    Google Scholar 

  • England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe biasin small samples. Conserv Genet 7:303

    Google Scholar 

  • Engler JO, Secondi J, Dawson DA, Elle O, Hochkirch A (2016) Range expansion and retraction along a moving contact zone has no effect on the genetic diversity of two passerine birds. Ecography 39:884–893

    Google Scholar 

  • Environment Canada (2014) Recovery Strategy for the Ivory Gull (Pagophila eburnea) in Canada. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. iv+ 21 pp

  • Estoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. In Carvalho GR (ed) Advances in molecular ecology, 55–85. IOS Press, Burke, Virginia, USA

  • Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112

    CAS 
    PubMed 

    Google Scholar 

  • Felsenstein J (1971) Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 168:581–597

    Google Scholar 

  • Fort J, Moe B, Strøm H, Grémillet D, Welcker J, Schultner J et al. (2013) Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover. Diversity Distrib 19:1322–1332

    Google Scholar 

  • Fraïsse C, Popovic I, Mazoyer C, Spataro B, Delmotte S, Romiguier J et al. (2021). DILS: Demographic inferences with linked selection by using ABC. Mol Ecol Resourc 21:2629–2644

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genetical Res 66:95–107

    Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Google Scholar 

  • Garnier J, Lewis MA (2016) Expansion under climate change: the genetic consequences. Bull Math Biol 78:2165–2185

    PubMed 

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    CAS 
    PubMed 

    Google Scholar 

  • Gavrilo M, Martynova D (2017) Conservation of rare species of marine flora and fauna of the Russian Arctic National Park, included in the Red Data Book of the Russian Federation and in the IUCN Red List. Nat Conserv Res 2:10–42

    Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    CAS 
    PubMed 

    Google Scholar 

  • Gilchrist HG, Mallory ML (2005) Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol Conserv 121:303–309

    Google Scholar 

  • Gilchrist HG, Strøm H, Gavrilo MV, Mosbech A (2008). International ivory gull conservation strategy and action plan. CAFF International Secretariat,Circumpolar Seabird Group (CBird), CAFF Technical Report No. 18

  • Gilg O, Boertmann D, Merkel F, Aebischer A, Sabard B (2009) Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biol 32:1275–1286

    Google Scholar 

  • Gilg O, Istomina L, Heygster G, Strøm H, Gavrilo M, Mallory ML et al. (2016) Living on the edge of a shrinking habitat: the ivory gull, Pagophila eburnea, an endangered sea-ice specialist. Biol Lett 12:20160277

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Gremillet D et al. (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann N Y Acad Sci 1249:166–190

    PubMed 

    Google Scholar 

  • Goutte A, Kriloff M, Weimerskirch H, Chastel O (2011) Why do some adult birds skip breeding? A hormonal investigation in a long-lived bird. Biol Lett 7:790–792

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillaume F, Rougemont J (2006) Nemo: an evolutionary and population genetics programming framework. Bioinformatics 22:2556–2557

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill WG (1972) Effective size of populations with overlapping generations. Theor Popul Biol 3:278–289

    CAS 
    PubMed 

    Google Scholar 

  • Hoban SM, Mezzavilla M, Gaggiotti OE, Benazzo A, van Oosterhout C, Bertorelle G (2013) High variance in reproductive success generates a false signature of a genetic bottleneck in populations of constant size: a simulation study. BMC Bioinforma 14:309

    Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    CAS 
    PubMed 

    Google Scholar 

  • Hohenlohe PA, Funk WC, Rajora OP (2021) Population genomics for wildlife conservation and management. Mol Ecol 30:62–82

    PubMed 

    Google Scholar 

  • Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends Ecol Evol 27:578–584

    PubMed 

    Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laporte V, Charlesworth B (2002) Effective population size and population subdivision in demographically structured populations. Genetics 162:501–519

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leblois R, Pudlo P, Néron J, Bertaux F, Reddy Beeravolu C, Vitalis R et al. (2014) Maximum-Likelihood Inference of Population Size Contractions from Microsatellite Data. Mol Biol Evol 31:2805–2823

    CAS 
    PubMed 

    Google Scholar 

  • Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu X, Fu Y-X (2015) Exploring population size changes using SNP frequency spectra. Nat Genet 47:555–559

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lucia M, Verboven N, Strom H, Miljeteig C, Gavrilo MV, Braune BM et al. (2015) Circumpolar contamination in eggs of the high-arctic ivory gull Pagophila eburnea. Environ Toxicol Chem 34:1552–1561

    CAS 
    PubMed 

    Google Scholar 

  • Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Google Scholar 

  • Mallory ML, Allard KA, Braune BM, Gilchrist HG, Thomas VG (2012) New longevity record for ivory gulls (Pagophila eburnea) and evidence of natal philopatry. Arctic 65:98–101

    Google Scholar 

  • Marandel F, Charrier G, Lamy J-B, Le Cam S, Lorance P, Trenkel VM (2020) Estimating effective population size using RADseq: Effects of SNP selection and sample size. Ecol Evol 10:1929–1937

    PubMed 
    PubMed Central 

    Google Scholar 

  • McInerny GJ, Turner JRG, Wong HY, Travis JMJ, Benton TG (2009) How range shifts induced by climate change affect neutral evolution. Proc R Soc B: Biol Sci 276:1527–1534

    CAS 

    Google Scholar 

  • McRae L, Deinet S, Gill M, Collen B (2012) Arctic species trend index: tracking trends in Arctic marine populations. CAFF Assessment Series No. 7. Conservation of Arctic Flora and Fauna, Iceland

    Google Scholar 

  • Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A et al. (2020) Polar Regions. In: Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change (IPCC)) Geneva, pp 203–320

  • Miljeteig C, Strom H, Gavrilo MV, Volkov A, Jenssen BM, Gabrielsen GW (2009) High levels of contaminants in ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic. Environ Sci Technol 43:5521–5528

    CAS 
    PubMed 

    Google Scholar 

  • Miller MP, Haig SM, Mullins TD, Popper KJ, Green M (2012) Evidence for population bottlenecks and subtle genetic structure in the yellow rail. Condor 114:100–112

    Google Scholar 

  • Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr Biol 25:1375–1380

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329–1341

    PubMed 

    Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the Effective Population Size of Conserved Populations. Conserv Biol 8:175–184

    Google Scholar 

  • Nunziata SO, Weisrock DW (2018) Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120:196–207

    CAS 
    PubMed 

    Google Scholar 

  • Nyström V, Angerbjörn A, Dalén L (2006) Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114:84–94

    Google Scholar 

  • Orive ME (1993) Effective population size in organisms with complex life-histories. Theor Popul Biol 44:316–340

    CAS 
    PubMed 

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parreira BR, Chikhi L (2015) On some genetic consequences of social structure, mating systems, dispersal, and sampling. Proc Natl Acad Sci USA 112:E3318

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parreira B, Quéméré E, Vanpé C, Carvalho I, Chikhi L (2020) Genetic consequences of social structure in the golden-crowned sifaka. Heredity 125:328–339

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peart CR, Tusso S, Pophaly SD, Botero-Castro F, Wu C-C, Aurioles-Gamboa D et al. (2020) Determinants of genetic variation across eco-evolutionary scales in pinnipeds. Nat Ecol Evol 4:1095–1104

    PubMed 

    Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S et al. (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    PubMed 

    Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Heredity 90:502–503

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Rousset F (1999) Genetic Differentiation in Populations with Different Classes of Individuals. Theor Popul Biol 55:297–308

    CAS 
    PubMed 

    Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for windows and linux. Mol Ecol Notes 8:103–1006

    Google Scholar 

  • Rousset F, Beeravolu CR, Leblois R (2018) Likelihood computation and inference of demographic and mutational parameters from population genetic data under coalescent approximations. J de la Société Française de Statistique 159:142–166

    Google Scholar 

  • Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change 2:285–288

    Google Scholar 

  • Shafer ABA, Gattepaille LM, Stewart REA, Wolf JBW (2015) Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Mol Ecol 24:328–345

    PubMed 

    Google Scholar 

  • Spencer NC, Gilchrist HG, Mallory ML (2014) Annual movement patterns of endangered ivory gulls: the importance of sea ice. Plos ONE 9:e115231

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stenhouse IJ, Robertson GJ, Gilchrist HG (2004) Recoveries and survival rates of ivory gulls (Pagophila eburnea) banded in Nunavut, Canada 1971–1999. Waterbirds 27:486–492

    Google Scholar 

  • Storz J, Ramakrishnan U, Alberts S (2002) Genetic effective size of a wild primate population: influence of current and historical demography. Evolution 56:817–29

    PubMed 

    Google Scholar 

  • Strøm H, Bakken V, Skoglund, Descamps S, Fjeldheim VB, Steen H (2020) Population status and trend of the threatened ivory gull Pagophila eburnea in Svalbard. Endanger Species Res 43:435–445

    Google Scholar 

  • Volkov AE, de Korte J (2000) Breeding ecology of the Ivory Gull (Pagophila eburnea) in Sedov Archipelago, Severnaya Zemlya. Heritage of the Russian Arctic. Research, conservation and international cooperation. Ecopros Publishers, Moscow, p 483–500

    Google Scholar 

  • Waples RS (2016) Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality. Heredity 117:241–250

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780

    PubMed 
    PubMed Central 

    Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolut Appl 3:244–262

    Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proc R Soc B: Biol Sci 280:20131339

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Google Scholar 

  • Wogan GOU, Voelker G, Oatley G, Bowie RCK (2020) Biome stability predicts population structure of a southern African aridland bird species. Ecol Evol 10:4066–4081

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xenikoudakis G, Ersmark E, Tison J-L, Waits L, Kindberg J, Swenson JE et al. (2015) Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol Ecol 24:3441–3454

    CAS 
    PubMed 

    Google Scholar 

  • Yannic G, Broquet T, Strøm H, Aebischer A, Dufresnes C, Gavrilo MV et al. (2016) Genetic and morphological sex identification methods reveal a male-biased sex ratio in the Ivory Gull Pagophila eburnea. J Ornithol 157:861–873

    Google Scholar 

  • Yannic G, Sermier R, Aebischer A, Gavrilo MV, Gilg O, Miljeteig C et al. (2011) Description of microsatellite markers and genotyping performances using feathers and buccal swabs for the ivory gull (Pagophila eburnea). Mol Ecol Resour 11:877–889

    PubMed 

    Google Scholar 

  • Yannic G, Yearsley J, Sermier R, Dufresnes C, Gilg O, Aebischer A et al. (2016) High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biol 39:221–236

    Google Scholar 

  • Yurkowski DJ, Auger-Méthé M, Mallory ML, Wong SNP, Gilchrist G, Derocher AE et al. (2019) Abundance and species diversity hotspots of tracked marine predators across the North American Arctic. Diversity Distrib 25:328–345

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Spatial occurrence and sources of PAHs in sediments drive the ecological and health risk of Taihu Lake in China