in

Seasonal bacterial niche structures and chemolithoautotrophic ecotypes in a North Atlantic fjord

[adace-ad id="91168"]
  • Cloern, J. E., Foster, S. Q. & Kleckner, A. E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11, 2477–2501 (2014).

    ADS 
    Article 

    Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science (80-) 281, 237–240 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: A continental scale review of climate-driven species redistribution in marine systems. Glob. Chang. Biol. 685, 171–181 (2021).

    Google Scholar 

  • Scanes, E., Scanes, P. R. & Ross, P. M. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 11, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rodrigues, J. G. et al. Marine and coastal cultural ecosystem services: knowledge gaps and research priorities. One Ecosyst. 2 (2017).

  • O’Brien, T. D., Lorenzoni, L., Isensee, K. & Valdés, L. What are marine ecological time series telling us about the ocean. A status report. IOC Tech. Ser. 129, 1–297 (2017).

    Google Scholar 

  • Ajani, P. A., Davies, C. H., Eriksen, R. S. & Richardson, A. J. Global warming impacts micro-phytoplankton at a long-term Pacific Ocean Coastal Station. Front. Mar. Sci. 7, 878 (2020).

    Article 

    Google Scholar 

  • Wiltshire, K. H. et al. Helgoland roads, North Sea: 45 years of change. Estuaries Coasts 33, 295–310 (2010).

    CAS 
    Article 

    Google Scholar 

  • Benway, H. M. et al. Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications. Front. Mar. Sci. 6, 393 (2019).

    Article 

    Google Scholar 

  • Wilson, J. M., Chamberlain, E. J., Erazo, N., Carter, M. L. & Bowman, J. S. Recurrent microbial community types driven by nearshore and seasonal processes in coastal Southern California. Environ. Microbiol. 23, 3225 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28, 538–551 (1976).

    ADS 
    CAS 

    Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Brown, M. V. et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Sci. Data 5, 180130 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buttigieg, P. L. et al. Marine microbes in 4D—Using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 43, 169–185 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Chow, C.-E.T. et al. Temporal variability and coherence of euphotic zone bacterial communities over a decade in the southern California Bight. ISME J. 7, 2259–2273 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krabberød, A. K. et al. Long-term patterns of an interconnected core marine microbiota. bioRxiv 2021.03.18.435965. https://doi.org/10.1101/2021.03.18.435965 (2021).

  • Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Auladell, A. et al. Seasonal niche differentiation among closely related marine bacteria. ISME J. https://doi.org/10.1038/s41396-021-01053-2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robicheau, B. M., Tolman, J., Bertrand, E. M. & LaRoche, J. Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic. ISME Commun. 2(1), 1–12 (2022).

    Article 

    Google Scholar 

  • Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015).

    ADS 
    Article 

    Google Scholar 

  • Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 1–11 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science (80-). 325, 747–750 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Walsh, D. A. et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science (80-). 326, 578–582 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shan, S., Sheng, J., Thompson, K. R. & Greenberg, D. A. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model. Ocean Dyn. 61, 951–976 (2011).

    ADS 
    Article 

    Google Scholar 

  • Petrie, B. & Yeats, P. Simple models of the circulation, dissolved metals, suspended solids and nutrients in Halifax Harbour. Water Qual. Res. J. 25, 325–350 (1990).

    CAS 
    Article 

    Google Scholar 

  • WK, W. L. The State of Phytoplankton and Bacterioplankton at the Compass Buoy Station: Bedford Basin Monitoring Program 1992–2013. (Fisheries and Oceans Canada = Pêches et Océans Canada, 2014).

  • Haas, S. et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc. Natl. Acad. Sci. 118, e2004877118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084-1097.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity?. Ecology 82, 2381–2396 (2001).

    Article 

    Google Scholar 

  • Pernthaler, J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ. Microbiol. 19, 2133–2150 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science (80-) 336, 608–611 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wietz, M. et al. The polar night shift: Annual dynamics and drivers of microbial community structure in the Arctic Ocean. bioRxiv 2021.04.08.436999. https://doi.org/10.1101/2021.04.08.436999 (2021).

  • Ladau, J. et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 7, 1669–1677 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science (80-). 348, 1261359 (2015).

    Article 
    CAS 

    Google Scholar 

  • Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Raes, E. J. et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc. Natl. Acad. Sci. 115, E8266–E8275 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. 105, 7774–7778 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raes, E. J., Bodrossy, L., van de Kamp, J., Bissett, A. & Waite, A. M. Marine bacterial richness increases towards higher latitudes in the eastern Indian Ocean. Limnol. Oceanogr. Lett. 3, 10–19 (2018).

    Article 

    Google Scholar 

  • Oksanen, J. et al. The vegan package. Commun. Ecol. Packag. 10, 719 (2007).

    Google Scholar 

  • Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. 115, E6799–E6807 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • El-Swais, H., Dunn, K. A., Bielawski, J. P., Li, W. K. W. & Walsh, D. A. Seasonal assemblages and short-lived blooms in coastal north-west A tlantic O cean bacterioplankton. Environ. Microbiol. 17, 3642–3661 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raes, E. J. et al. Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat. Commun. 12, 2213 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. 105, 17861–17866 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wong, H. L., MacLeod, F. I., White, R. A., Visscher, P. T. & Burns, B. P. Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome 8, 1–14 (2020).

    Article 
    CAS 

    Google Scholar 

  • De Cáceres, M. How to use the indicspecies package (ver. 1.7.1). R Proj. 2, 29 (2013).

    Google Scholar 

  • Hood, R. R. et al. Pelagic functional group modeling: Progress, challenges and prospects. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 459–512 (2006).

    ADS 
    Article 

    Google Scholar 

  • Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 1–9 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lynam, C. P. et al. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. 114, 1952–1957 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou, Z. et al. Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. ISME J. 14, 3136–3148 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dede, B. et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 16(6), 1479–1490 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lavik, G. et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581–584 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science (80-) 333, 1296–1300 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Taguchi, S. & Platt, T. Assimilation of 14CO2 in the dark compared to phytoplankton production in a small coastal inlet. Estuar. Coast. Mar. Sci. 5, 679–684 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Platt, T. & Irwin, B. Phytoplankton Production and Nutrients in Bedford Basin, 1969–1970. (1971).

  • Vega, S. et al. Morphological plasticity in a sulfur-oxidizing marine bacterium from the SUP05 clade enhances dark carbon fixation. MBio 10, e00216-e219 (2021).

    Google Scholar 

  • Mattes, T. E., Ingalls, A. E., Burke, S. & Morris, R. M. Metabolic flexibility of SUP05 under low DO growth conditions. Environ. Microbiol. 23, 2823 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation. Proc. Natl. Acad. Sci. 103, 12552–12557 (2006).

  • Zorz, J. et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front. Microbiol. 10, 281 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2, e00127 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Article 

    Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, 191–16 (2017).

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lahti L. & Shetty, S.A. Tools for Microbiome Analysis in R. Microbiome Package Version 1.7.21. R/Bioconductor http://microbiome.github.com/microbiome. (2017).

  • Team, R. C. R: A Language and Environment for Statistical Computing. (2013).

  • Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article 

    Google Scholar 

  • Schlitzer, R. Ocean Data View. 2018. Available odv. awi. (2015).

  • Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. in Spherical Trigonometry. Vol. 1 (2017).

  • Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).

    Google Scholar 

  • Groemping, U. & Matthias, L. Package ‘relaimpo’. (2021).

  • Clarke, K. R. & Gorley, R. N. Primer. Prim. Plymouth (2006).

  • Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13, 79–90 (2002).

    Article 

    Google Scholar 

  • Tichy, L. & Chytry, M. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 17, 809–818 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Sharkipedia: a curated open access database of shark and ray life history traits and abundance time-series

    3Q: How MIT is working to reduce carbon emissions on our campus