in

Seasonal dynamics of ammonia-oxidizing bacteria but not archaea influence soil nitrogen cycling in a semi-arid agricultural soil

  • Schimel, J. P., Bennett, J. & Fierer, N. Microbial community composition and soil nitrogen cycling: is there really a connection? In Biological Diversity and Function in Soils Ecological Reviews (eds Bardgett, R. et al.) 171–188 (Cambridge University Press, 2005).

    Google Scholar 

  • Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, X. et al. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biol. Biochem. 126, 114–122 (2018).

    CAS 

    Google Scholar 

  • van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Comammox bacterial abundance, activity, and contribution in agricultural rhizosphere soils. Sci. Total Environ. 727, 138563 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, F., Liang, X., Ma, S., Liu, L. & Wang, J. Ammonia-oxidizing archaea are dominant over comammox in soil nitrification under long-term nitrogen fertilization. J. Soils Sediments 21, 1800–1814 (2021).

    CAS 

    Google Scholar 

  • Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spang, A. et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18, 331–340 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Schleper, C. & Nicol, G. W. Ammonia-oxidising archaea—Physiology, ecology and evolution. Adv. Microb. Physiol. 57, 1–41 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Amin, S. A. et al. Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment. Limnol. Oceanogr. 58, 2037–2045 (2013).

    CAS 

    Google Scholar 

  • Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gubry-Rangin, C. et al. Niche specialization of terrestrial archaeal ammonia oxidizers. Proc. Natl. Acad. Sci. U.S.A. 108, 21206–21211 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., Prosser, J. I. & Nicol, G. W. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. U.S.A. 108, 15892–15897 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banning, N. C., Maccarone, L. D., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Di, H. J. et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 72, 386–394 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Wang, J., Rhodes, G., He, J. Z. & Ge, Y. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Sci. Total Environ. 668, 224–233 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ouyang, Y., Evans, S. E., Friesen, M. L. & Tiemann, L. K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 127, 71–78 (2018).

    CAS 

    Google Scholar 

  • Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wardle, D. A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 30, 1627–1637 (1998).

    CAS 

    Google Scholar 

  • Adair, K. L. & Schwartz, E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb. Ecol. 56, 420–426 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Taylor, A. E., Zeglin, L. H., Wanzek, T. A., Myrold, D. D. & Bottomley, P. J. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 6, 2024–2032 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayatsu, M., Katsuyama, C. & Tago, K. Overview of recent researches on nitrifying microorganisms in soil. Soil Sci. Plant Nutr. 67, 1–14 (2021).

    Google Scholar 

  • Sher, Y., Zaady, E. & Nejidat, A. Spatial and temporal diversity and abundance of ammonia oxidizers in semi-arid and arid soils: Indications for a differential seasonal effect on archaeal and bacterial ammonia oxidizers. FEMS Microbiol. Ecol 86, 544–556 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Stopnišek, N. et al. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl. Environ. Microbiol. 76, 7626–7634 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Habteselassie, M. Y., Xu, L. & Norton, J. M. Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Front. Microbiol. 4, 326 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Glob. Change Biol. 22, 2963–2978 (2016).

    Google Scholar 

  • Wessén, E., Nyberg, K., Jansson, J. K. & Hallin, S. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl. Soil Ecol. 45, 193–200 (2010).

    Google Scholar 

  • Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, P. & Pearce, F. AAAS Atlas of Population & Environment 204 (University of California Press, 2000).

    Google Scholar 

  • Reynolds, J. F., Maestre, F. T., Kemp, P. R., Smith, D. M. S. & Lambin, E. F. Natural and human dimensions of land degradation in drylands: Causes and consequences. In Terrestrial Ecosystems in a Changing World Global Change—The IGBP Series (eds Canadell, J. G. et al.) 247–258 (Springer, 2007).

    Google Scholar 

  • McArthur, W. M. Reference Soils of South-Western Australia 2nd edn. (Department of Agriculture, 2004).

    Google Scholar 

  • Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).

    CAS 

    Google Scholar 

  • Barton, L., Hoyle, F. C., Stefanova, K. T. & Murphy, D. V. Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agric. Ecosyst. Environ. 231, 320–330 (2016).

    CAS 

    Google Scholar 

  • Gubry-Rangin, C., Nicol, G. W. & Prosser, J. I. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol. Ecol. 74, 566–574 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Gleeson, D. B. et al. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol. Biochem. 42, 1888–1891 (2010).

    CAS 

    Google Scholar 

  • O’Sullivan, C. A., Wakelin, S. A., Fillery, I. R. P. & Roper, M. M. Factors affecting ammonia-oxidising microorganisms and potential nitrification rates in southern Australian agricultural soils. Soil Res. 51, 240–252 (2013).

    Google Scholar 

  • Zhang, L.-M., Hu, H.-W., Shen, J.-P. & He, J.-Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, F. et al. Responses of soil ammonia-oxidizing bacteria and archaea to short-term warming and nitrogen input in a semi-arid grassland on the Loess Plateau. Eur. J. Soil Biol. 102, 103267 (2021).

    CAS 

    Google Scholar 

  • Bolland, M. D. A. & Brennan, R. F. Phosphorus, copper and zinc requirements of no-till wheat crops and methods of collecting soil samples for soil testing. Aust. J. Exp. Agric. 46, 1051–1059 (2006).

    CAS 

    Google Scholar 

  • Gilkes, B., Lee, S. & Singh, B. The imprinting of aridity upon a lateritic landscape: An illustration from southwestern Australia. C. R. Geosci. 335, 1207–1218 (2003).

    Google Scholar 

  • Hoyle, F. C. & Murphy, D. V. Influence of organic residues and soil incorporation on temporal measures of microbial biomass and plant available nitrogen. Plant Soil 347, 53–64 (2011).

    CAS 

    Google Scholar 

  • Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 4, 25–51 (1973).

    Google Scholar 

  • Petersen, D. G. et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol. 14, 993–1008 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).

    CAS 

    Google Scholar 

  • Murphy, D. V., Sparling, G. P., Fillery, I. R. P., McNeill, A. M. & Braunberger, P. Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil. Aust. J. Soil Res. 36, 231–246 (1998).

    Google Scholar 

  • Anderson, G. C., Fillery, I. R. P., Dunin, F. X., Dolling, P. J. & Asseng, S. Nitrogen and water flows under pasture–wheat and lupin–wheat rotations in deep sands in Western Australia 2. Drainage and nitrate leaching. Aust. J. Agric. Res. 49, 345–361 (1998).

    CAS 

    Google Scholar 

  • Nicholls, N. Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958–2007. Clim. Dyn. 34, 835–845 (2010).

    Google Scholar 

  • Delworth, T. L. & Zeng, F. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci. 7, 583 (2014).

    CAS 

    Google Scholar 

  • Alexander, L. V. et al. Trends in Australia’s climate means and extremes: A global context. Aust. Meteorol. Mag. 56, 1–18 (2007).

    Google Scholar 

  • Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).

    PubMed 

    Google Scholar 

  • Isbell, R. F. The Australian Soil Classification 2nd edn. (CSIRO Publishing, 2002).

    Google Scholar 

  • IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007 203 (FAO, 2007).

    Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    CAS 

    Google Scholar 

  • Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).

    CAS 

    Google Scholar 

  • Krom, M. D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105, 305–316 (1980).

    CAS 

    Google Scholar 

  • Kamphake, L. J., Hannah, S. A. & Cohen, J. M. Automated analysis for nitrate by hydrazine reduction. Water Res. 1, 205–216 (1967).

    CAS 

    Google Scholar 

  • Keeney, D. R. & Bremner, J. M. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron. J. 58, 498–503 (1966).

    CAS 

    Google Scholar 

  • Waring, S. A. & Bremner, J. M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201, 951–952 (1964).

    CAS 

    Google Scholar 

  • Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. U.S.A. 102, 14683–14688 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barton, L., Gleeson, D. B., Maccarone, L. D., Zúñiga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils? Soil Biol. Biochem. 62, 28–35 (2013).

    CAS 

    Google Scholar 

  • Akaike, H. Likelihood of a model and information criteria. J. Econom. 16, 3–14 (1981).

    MATH 

    Google Scholar 

  • Cresswell, H. P. & Hamilton, G. J. Bulk density and pore space relations. In Soil Physical Measurement and Interpretation for Land Evaluation (eds McKenzie, N. et al.) 35–58 (CSIRO Publishing, 2002).

    Google Scholar 

  • Rayment, G. E. & Lyons, D. J. Soil Chemical Methods—Australasia 495 (CSIRO Publishing, 2011).

    Google Scholar 

  • MALDI mass spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna

    Risk factors for antibiotic-resistant bacteria colonisation in children with chronic complex conditions