in

Seasonal dynamics of ammonia-oxidizing bacteria but not archaea influence soil nitrogen cycling in a semi-arid agricultural soil

  • Schimel, J. P., Bennett, J. & Fierer, N. Microbial community composition and soil nitrogen cycling: is there really a connection? In Biological Diversity and Function in Soils Ecological Reviews (eds Bardgett, R. et al.) 171–188 (Cambridge University Press, 2005).

    Google Scholar 

  • Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, X. et al. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biol. Biochem. 126, 114–122 (2018).

    CAS 

    Google Scholar 

  • van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Comammox bacterial abundance, activity, and contribution in agricultural rhizosphere soils. Sci. Total Environ. 727, 138563 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, F., Liang, X., Ma, S., Liu, L. & Wang, J. Ammonia-oxidizing archaea are dominant over comammox in soil nitrification under long-term nitrogen fertilization. J. Soils Sediments 21, 1800–1814 (2021).

    CAS 

    Google Scholar 

  • Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spang, A. et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18, 331–340 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Schleper, C. & Nicol, G. W. Ammonia-oxidising archaea—Physiology, ecology and evolution. Adv. Microb. Physiol. 57, 1–41 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Amin, S. A. et al. Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment. Limnol. Oceanogr. 58, 2037–2045 (2013).

    CAS 

    Google Scholar 

  • Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gubry-Rangin, C. et al. Niche specialization of terrestrial archaeal ammonia oxidizers. Proc. Natl. Acad. Sci. U.S.A. 108, 21206–21211 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., Prosser, J. I. & Nicol, G. W. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. U.S.A. 108, 15892–15897 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banning, N. C., Maccarone, L. D., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Di, H. J. et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 72, 386–394 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Wang, J., Rhodes, G., He, J. Z. & Ge, Y. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Sci. Total Environ. 668, 224–233 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ouyang, Y., Evans, S. E., Friesen, M. L. & Tiemann, L. K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 127, 71–78 (2018).

    CAS 

    Google Scholar 

  • Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wardle, D. A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 30, 1627–1637 (1998).

    CAS 

    Google Scholar 

  • Adair, K. L. & Schwartz, E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb. Ecol. 56, 420–426 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Taylor, A. E., Zeglin, L. H., Wanzek, T. A., Myrold, D. D. & Bottomley, P. J. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 6, 2024–2032 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayatsu, M., Katsuyama, C. & Tago, K. Overview of recent researches on nitrifying microorganisms in soil. Soil Sci. Plant Nutr. 67, 1–14 (2021).

    Google Scholar 

  • Sher, Y., Zaady, E. & Nejidat, A. Spatial and temporal diversity and abundance of ammonia oxidizers in semi-arid and arid soils: Indications for a differential seasonal effect on archaeal and bacterial ammonia oxidizers. FEMS Microbiol. Ecol 86, 544–556 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Stopnišek, N. et al. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl. Environ. Microbiol. 76, 7626–7634 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Habteselassie, M. Y., Xu, L. & Norton, J. M. Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Front. Microbiol. 4, 326 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Glob. Change Biol. 22, 2963–2978 (2016).

    Google Scholar 

  • Wessén, E., Nyberg, K., Jansson, J. K. & Hallin, S. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl. Soil Ecol. 45, 193–200 (2010).

    Google Scholar 

  • Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, P. & Pearce, F. AAAS Atlas of Population & Environment 204 (University of California Press, 2000).

    Google Scholar 

  • Reynolds, J. F., Maestre, F. T., Kemp, P. R., Smith, D. M. S. & Lambin, E. F. Natural and human dimensions of land degradation in drylands: Causes and consequences. In Terrestrial Ecosystems in a Changing World Global Change—The IGBP Series (eds Canadell, J. G. et al.) 247–258 (Springer, 2007).

    Google Scholar 

  • McArthur, W. M. Reference Soils of South-Western Australia 2nd edn. (Department of Agriculture, 2004).

    Google Scholar 

  • Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).

    CAS 

    Google Scholar 

  • Barton, L., Hoyle, F. C., Stefanova, K. T. & Murphy, D. V. Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agric. Ecosyst. Environ. 231, 320–330 (2016).

    CAS 

    Google Scholar 

  • Gubry-Rangin, C., Nicol, G. W. & Prosser, J. I. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol. Ecol. 74, 566–574 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Gleeson, D. B. et al. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol. Biochem. 42, 1888–1891 (2010).

    CAS 

    Google Scholar 

  • O’Sullivan, C. A., Wakelin, S. A., Fillery, I. R. P. & Roper, M. M. Factors affecting ammonia-oxidising microorganisms and potential nitrification rates in southern Australian agricultural soils. Soil Res. 51, 240–252 (2013).

    Google Scholar 

  • Zhang, L.-M., Hu, H.-W., Shen, J.-P. & He, J.-Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, F. et al. Responses of soil ammonia-oxidizing bacteria and archaea to short-term warming and nitrogen input in a semi-arid grassland on the Loess Plateau. Eur. J. Soil Biol. 102, 103267 (2021).

    CAS 

    Google Scholar 

  • Bolland, M. D. A. & Brennan, R. F. Phosphorus, copper and zinc requirements of no-till wheat crops and methods of collecting soil samples for soil testing. Aust. J. Exp. Agric. 46, 1051–1059 (2006).

    CAS 

    Google Scholar 

  • Gilkes, B., Lee, S. & Singh, B. The imprinting of aridity upon a lateritic landscape: An illustration from southwestern Australia. C. R. Geosci. 335, 1207–1218 (2003).

    Google Scholar 

  • Hoyle, F. C. & Murphy, D. V. Influence of organic residues and soil incorporation on temporal measures of microbial biomass and plant available nitrogen. Plant Soil 347, 53–64 (2011).

    CAS 

    Google Scholar 

  • Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 4, 25–51 (1973).

    Google Scholar 

  • Petersen, D. G. et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol. 14, 993–1008 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).

    CAS 

    Google Scholar 

  • Murphy, D. V., Sparling, G. P., Fillery, I. R. P., McNeill, A. M. & Braunberger, P. Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil. Aust. J. Soil Res. 36, 231–246 (1998).

    Google Scholar 

  • Anderson, G. C., Fillery, I. R. P., Dunin, F. X., Dolling, P. J. & Asseng, S. Nitrogen and water flows under pasture–wheat and lupin–wheat rotations in deep sands in Western Australia 2. Drainage and nitrate leaching. Aust. J. Agric. Res. 49, 345–361 (1998).

    CAS 

    Google Scholar 

  • Nicholls, N. Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958–2007. Clim. Dyn. 34, 835–845 (2010).

    Google Scholar 

  • Delworth, T. L. & Zeng, F. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci. 7, 583 (2014).

    CAS 

    Google Scholar 

  • Alexander, L. V. et al. Trends in Australia’s climate means and extremes: A global context. Aust. Meteorol. Mag. 56, 1–18 (2007).

    Google Scholar 

  • Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).

    PubMed 

    Google Scholar 

  • Isbell, R. F. The Australian Soil Classification 2nd edn. (CSIRO Publishing, 2002).

    Google Scholar 

  • IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007 203 (FAO, 2007).

    Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    CAS 

    Google Scholar 

  • Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).

    CAS 

    Google Scholar 

  • Krom, M. D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105, 305–316 (1980).

    CAS 

    Google Scholar 

  • Kamphake, L. J., Hannah, S. A. & Cohen, J. M. Automated analysis for nitrate by hydrazine reduction. Water Res. 1, 205–216 (1967).

    CAS 

    Google Scholar 

  • Keeney, D. R. & Bremner, J. M. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron. J. 58, 498–503 (1966).

    CAS 

    Google Scholar 

  • Waring, S. A. & Bremner, J. M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201, 951–952 (1964).

    CAS 

    Google Scholar 

  • Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. U.S.A. 102, 14683–14688 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barton, L., Gleeson, D. B., Maccarone, L. D., Zúñiga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils? Soil Biol. Biochem. 62, 28–35 (2013).

    CAS 

    Google Scholar 

  • Akaike, H. Likelihood of a model and information criteria. J. Econom. 16, 3–14 (1981).

    MATH 

    Google Scholar 

  • Cresswell, H. P. & Hamilton, G. J. Bulk density and pore space relations. In Soil Physical Measurement and Interpretation for Land Evaluation (eds McKenzie, N. et al.) 35–58 (CSIRO Publishing, 2002).

    Google Scholar 

  • Rayment, G. E. & Lyons, D. J. Soil Chemical Methods—Australasia 495 (CSIRO Publishing, 2011).

    Google Scholar 


  • Source: Ecology - nature.com

    Absent legislative victory, the president can still meet US climate goals

    Spatiotemporal variation characteristics of livestock manure nutrient in the soil environment of the Yangtze River Delta from 1980 to 2018