Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40, 45–44 (2015).
Google Scholar
Zalucki, M., Furlong, M. J., Schellhorn, N. A., Macfadyen, S. & Davies, A. P. Assessing the impact of natural enemies in agroecosystems: toward “real” IPM or in quest of Holy Grail? Insect. Sci. 22, 1–5 (2015).
Google Scholar
Van Lenteren, J. C., Bolckmans, K., Kohl, J., Ravensberg, W. J. & Urabaneja, A. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63, 39–59 (2018).
Google Scholar
Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biological control agents. Annu. Rev. Entomol. 47, 561–594 (2002).
Google Scholar
Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).
Google Scholar
Van Nouhuys, S., Niemikapee, S. & Hanski, I. Variation in a host-parasitoid interaction across independent populations. Insects 3, 1236–1256 (2012).
Google Scholar
Hedlund, K., Vet, L. E. M. & Dicke, M. Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77, 390–398 (1996).
Google Scholar
Evans, E. W., Stevenson, A. T. & Richards, D. R. Essential versus alternative foods of insect predators: benefits of a mixed diet. Oelcologia 121, 107–112 (1999).
Google Scholar
Lovei, G. L. & Sunderland, K. M. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256 (1996).
Google Scholar
Kromp, B. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyt. Environ. 74, 187–228 (1999).
Google Scholar
Tuf, H., Dedek, P. & Vesley, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature, or habitat? Arch. Biol. Sci. 64, 721–732 (2012).
Google Scholar
Firlej, A., Doyon, J., Harwood, J. D. & Brodeur, J. A multi-approach study to delineate interaction between carabid beetles and soybean aphids. Environ. Entomol. 42, 89–96 (2013).
Google Scholar
Clark, M. S., Luna, J. M., Stone, N. D. & Youngman, R. R. Generalist predator consumption of armyworm (Lepidoptera: Noctuidae) and effect of predator removal and damage in no-till corn. Environ. Entomol. 23, 617–622 (1994).
Google Scholar
Floate, K. D., Doane, J. F. & Gillot, C. Carabid predators of the wheat midge (Diptera: Cecidomyiidae) in Saskatchewan. Environ. Entomol. 19, 1503–1511 (1990).
Google Scholar
Barsics, F., Haubruge, E. & Verheggen, F. J. Wireworms’ management: an overview of the existing methods, with particular regards to Agriotis spp. (Coleoptera: Elateridae). Insects 4, 117–152 (2013).
Google Scholar
Oberholzer, F., Escher, N. & Frank, T. The potential of carabid beetles (Coleoptera) to reduce slug damage to oilseed rape in the laboratory. Eur. J. Entomol. 100, 81–85 (2003).
Google Scholar
Honek, A., Martinkova, Z. & Jarosik, V. Ground beetles Carabidae as seed predators. Eur. J. Entomol. 100, 531–544 (2003).
Google Scholar
Lundgren, J. G. Relationship of Natural Enemies and Non-prey Foods 1–460 (Springer, 2009).
Carbonne, B. et al. The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Sci. Rep. 10, 1935 (2020).
Google Scholar
Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D. & Simpson, S. J. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16, 895–902 (2013).
Google Scholar
Denno, R. F. & Fagan, W. F. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84, 2522–2531 (2003).
Google Scholar
Saska, P. & Jarosik, V. Laboratory study of larval food requirements in nine species of Amara (Coleoptera: Carabidae). Plant Prot. 37, 103–110 (2001).
Saska, P., Van der Werf, W. & Westerman, P. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of weed seed predation. Bull. Entomological Res. 98, 169–181 (2008).
Google Scholar
Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. P. A synthesis of the feeding habits and reproductive rhythms in Italian seed feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).
Google Scholar
Fawki, S., Bak, S. S. & Toft, S. Food preference and food value for the carabid beetles Pterostichus melanarius, P. versicolor, and Carabus nemoralis. Eur. Carabidol. 114, 99–109 (2003).
Frei, B., Guenay, Y., Bohan, B. A., Traugett, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across central Europe. J. Plant Sci. 92, 935–942 (2019).
Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Brassicaceous weed seed predation by ground beetles (Coleoptera: Carabidae). Weed. Sci. 64, 294–302 (2016).
Google Scholar
Saska, P., Honek, A., Foffova, H. & Martinkova, Z. Burial-induced changes in the seed preferences of carabid beetles (Coleoptera: Carabidae). Eur. J. Entomol. 116, 113–140 (2019).
Google Scholar
Saska, P., Honek, A. & Martinkova, Z. Preference of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).
Google Scholar
Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 61, 379–390 (2001).
Google Scholar
Barron, A. B., Gurney, K. N., Meah, L. F. S., Vasilaki, E. & Marshall, J. A. R. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front. Behav. Neurosci. 9, 216 (2015).
Google Scholar
Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: a review. Weed. Sci. 63, 355–376 (2015).
Google Scholar
Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Seed detection and discrimination by ground beetles (Coleoptera: Carabidae) are associated with olfactory cues. PLoS One 12, e0170593 (2017).
Google Scholar
Law, J. J. & Gallagher, R. S. The role of imbibition on seed selection by Harpalus pensylvanicus. Appl. Soil. Ecol. 87, 118–124 (2015).
Google Scholar
Davis, A. S., Schutte, B. J., Iannuzzi, J. & Renner, K. A. Chemical and physical defenses of weed seeds in relation to soil seedbank persistence. Weed Sci. 56, 676–684 (2008).
Google Scholar
Ali, K. A. & Willneborg., C. J. C. J. The biology of seed discrimination and its role in shaping the foraging ecology of carabids: a review. Ecol. Evol. 11, 13702–13722 (2021).
Google Scholar
Wheater, C. P. Prey detection by some predatory Coleoptera (Carabidae and Staphylinidae). J. Zool. 215, 171–185 (1989).
Google Scholar
Mundy, C. A., Aleen-Williams, L. J., Underwood, N. & Warrington, S. Prey selection and foraging behavior by Pterostichus cupreus L. (Col., Carabidae) under laboratory conditions. J. Appl. Entomol. 124, 349–358 (2000).
Google Scholar
Kielty, J. P., Allen-Williams, L. J., Underwood, N. & Eastwood, E. A. Behavioral responses of three species of ground beetles (Carabidae: Coloeptera) to olfactory cues associated with prey and habitat. J. Insect. Behav. 9, 237–249 (1996).
Google Scholar
Tréfás, H., Canning, H., McKinlay, R. G., Armstrong, G. & Bujaki, G. Preliminary experiments on the olfactory responses of Pterostichus melanarius Illiger (Coleoptera:Carabidae) to intact plants. Agric. Entomol. 3, 71–76 (2001).
Google Scholar
McKemey, A. R., Symondson, W. O. C. & Glen, D. M. Predation and prey size choice by the carabid Pterostichus melanarius (Coleoptera: Carabidae): the dangers of extrapolating from laboratory to field. Bull. Entomol. Res. 93, 227–234 (2003).
Google Scholar
Thomas, R. S., Glen, D. M. & Symondson, W. O. C. Prey detection through olfaction by the soil-dwelling larvae of the carabid predator Pterostichus melanarius. Soil Biol. Biochem. 40, 207–216 (2008).
Google Scholar
Talarico, F. et al. Electrophysiological and behavioral analyses on prey selecting in the myrmecophagous carabid beetle Siagona europaea Dejean 1826 (Coleoptera: Carabidae). Etho. Ecol. Evol. 22, 375–384 (2010).
Google Scholar
Dessaint, F., Chadoeuf, R. & Barrales, G. Spatial pattern analysis of weed seeds in the cultivated soil seed bank. J. Appl. Ecol. 28, 721–730 (1991).
Google Scholar
Oster, M., Smith, L., Beck, J. J., Howard, A. & Field, C. B. Orientational behavior of predaceous ground beetle species in response to volatile emissions identified from yellow starthistle damaged by an invasive slug. Arthropod-Plant. Inte. 8, 429–437 (2014).
Google Scholar
Srinivasan, M. V., Poteser, M. & Karl, K. Motion detection in insect orientation and navigation. Vis. Res. 39, 2749–2766 (1999).
Google Scholar
Sato, K. & Touhara, K. Insect olfaction: receptors, signal transduction, and behavior. Cell 47, 121–138 (2009).
Google Scholar
Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Ann. Rev. Entomol. 58, 373–391 (2013).
Google Scholar
Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: beyond receptors. Open Biol. 10, 200252 (2020).
Google Scholar
Prokopy, R. J. & Owens, E. D. Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 28, 337–364 (1983).
Google Scholar
Ploomi, A. et al. Antennal sensilla in ground beetles (Coleoptera: Carabidae). Agron. Res. 1, 221–228 (2003).
Merivee, E. et al. Electrophysiological responses from neurons of antennal taste sensilla in the polyphagous predatory ground beetle Pterostichus oblongopunctatus (Fabricius 1787) to plant sugars and amin acids. J. Insect. Physiol. 54, 1213–1219 (2008).
Google Scholar
Merivee, E., Ploomi, A., Luik, A., Rahi, M. & Smmelselg, V. Antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan, 1763) (Coleoptera: Carabidae). Micros. Res. Tech. 55, 339–349 (2001).
Google Scholar
Merivee, E. et al. Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera: Carabidae). Micron 33, 429–440 (2002).
Google Scholar
Giglio, A., Perotta, E., Talarico, F., Brandmayr, T. E. & Ferrera, E. A. Sensilla on the maxillary and labial palps in a helicophagous ground beetle larva (Coleoptera: Carabidae). Acta Zool. 200, 1463–6393 (2013).
Van Naters, W. V. D. G. & Carlson, J. R. J. R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007).
Google Scholar
Amrein, H. & Throne, N. Gustatory perception and behavior in Dropsophila melanogaster. Curr. Biol. 15, R673–R684 (2005).
Google Scholar
Su, C. Y., Menuz, K. & Carlson, J. R. Olfactory perception: receptors, cells, and circuits. Cell 139, 45–59 (2009).
Google Scholar
Krieger, J. & Breer, H. Olfactory receptors in invertebrates. Science 286, 720–723 (1999).
Google Scholar
Chapman, R. F. The Insects: Structure and Function 4th edn, 1–584 (Cambridge University Press, 1998).
Bhandari, S. R., Jo, J. S. & Lee, J. G. Comparisons of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20, 15827–15841 (2015).
Google Scholar
Reifenrath, K., Riederer, M. & Muller, M. Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol. Exp. Appl. 115, 41–50 (2005).
Google Scholar
Stadler, E. & Reifenrath, K. Glucosinolates on the leaf surface perceived by insect herbivores: review of ambiguous results and new investigations. Phytoch. Rev. 8, 207–225 (2009).
Google Scholar
Sharma, A., Sandhi, R. K. & Reddy, G. V. P. A review of interactions between insect biological control agents and semiochemicals. Insects 10, 439 (2019).
Google Scholar
Warwick, S. I., Francis, A. & Susko, D. J. The biology of Canadian weeds. 9. Thlaspi arvense L. (updated). Can. J. Plant. Sci. 82, 803–823 (2002).
Google Scholar
Moyna, P. & Garcia, M. Chemical composition of oat seed epicuticular lipids. J. Sci. Food Agric. 34, 209–211 (1983).
Google Scholar
Kunst, L. & Samuels, A. L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80 (2003).
Google Scholar
Eigenbrode, S. D. & Espelie, K. E. Effects of plants epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40, 171–194 (1995).
Google Scholar
Finch, S. Volatile plant chemicals and their effect on host plant by the cabbage root fly (Delia brassicae). Entomol. Exp. Appl. 24, 350–359 (1978).
Google Scholar
Udayagiri, S. & Mason, C. E. Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J. Chem. Ecol. 23, 1675–1687 (1997).
Google Scholar
Adati, T. & Matsuda, K. The effect of leaf surface wax on feeding of the strawberry leaf beetle, Galerucella vittaticollis, with reference to host plant preference. Tohoku. J. Agric. Res. 50, 57–61 (2000).
Damon, S. J., Groves, R. L. & Harvey, M. J. Variation for epicuticular waxes on onion foliage and impacts on numbers of onion thrips. J. Am. Soc. Hortic. Sci. 139, 495–501 (2014).
Google Scholar
Braccini, C. L., Vega, A. S., Chludil, H. D., Leicach, S. R. & Fernandez, P. C. Host selection, oviposition behavior and leaf traits in a specialist willow sawfly on species of Salix (Salicaceae). Ecol. Entomol. 38, 617–626 (2013).
Google Scholar
Wojcicka, A. Effects of epicuticular waxes from triticale on the feeding behaviour and mortality of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). J. Plant. Prot. Res. 56, 39–44 (2016).
Google Scholar
Medina, E. et al. Taxonomic significance of the epicuticular wax composition in species of genus Clusia from Panama. Biochem. Syst. Ecol. 34, 319–326 (2006).
Google Scholar
Schulz-Bohm, K., Martin-Sanchez, L. & Garbeva, P. Microbial volatiles: small molecules with an inter-kingdom interactions. Front. Microbiol. 8, 2484 (2017).
Google Scholar
Ali, K. A. Mechanisms of Seed Discrimination and Selective Seed Foraging in Carabid Weed Seed Predators. https://harvest.usask.ca/bitstream/handle/10388/13815/ALI-DISSERTATION-2022.pdf?sequence=1&isAllowed=y (2022).
Webster, B., Qvarfordt, E., Olsson, U. & Glinwood, R. Different roles for innate and learnt behavioral responses to odors in insect host location. Behav. Ecol. 24, 366–372 (2013).
Google Scholar
Luff, M. L. Adult and larval feeding habits of Pterostichus madidus (F.) (Carabidae: Coleoptera). J. Nat. Hist. 8, 403–409 (1974).
Google Scholar
Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).
Google Scholar
Blubaugh, C. K., Hagler, J. R., Machtley, S. A. & Kaplan, I. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric. Ecosyst. Environ. 231, 264–270 (2016).
Google Scholar
Foffova, H. et al. Which seed properties determine the preferences of carabid beetles seed predators? Insects 11, 757 (2020).
Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): linking field measurements and laboratory diet assessments. Eur. J. Entomol. 111, 615–620 (2014).
Google Scholar
Carbonne, B. et al. Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. J. Appl. Ecol. 59, 176–187 (2022).
Google Scholar
Foffova, H., Bohan, D. A. & Saska, P. Do properties and species of weed seeds affect their consumption by carabid beetles? Acta Zool. Acad. Sci. Hung. 66, 37–48 (2020b).
Google Scholar
De Heij, S. E. & Willenborg, C. J. Connected carabids: network interactions and their impact on biocontrol by carabid beetles. Bioscience 70, 90–500 (2020).
Google Scholar
Honek, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine seed preference of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).
Google Scholar
Spence, J. R. & Niemela, J. K. Sampling carabid assemblages with pitfall traps: the madness and the method. Can. Entomol. 126, 881–884 (1994).
Google Scholar
Lindroth, C. H. The Ground Beetles (Carabidae, excluding Cicindelinae) of Canada and Alaska. Supplement 20, 24, 29, 33, 34, 35. Part I, pages I–XLVIII, 1969. Part II, pages 1–200, 1961. Part III, pages 201–408, 1963. Part IV, pages 409–648, 1966. Part V, pages 649–944, 1968. Part VI, pages 945–1192 (Opusca Entomology, 1961–1969).
White, S. S., Renner, K. A., Menalled, F. D. & Landis, D. A. Feeding preferences of weed seed predators and effect on weed emergence. Weed. Sci. 55, 606–612 (2007).
Google Scholar
Glinwood, R., Ahmed, E., Ovarfordt, E. & Ninkovic, V. Olfactory learning of plant genotypes by a polyphagous predator. Oecologia 166, 637–647 (2011).
Google Scholar
Sablon, L., Dickens, J. C., Haubruge, E. H. & Verhggen., F. J. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects 4, 31–54 (2013).
Google Scholar
Zhang, L., Li, H. & Zhang, L. Two olfactory pathways to detect aldehydes on locust mouthpart. Int. J. Biol. Sci. 13, 759–771 (2017).
Google Scholar
Pekar, S. & Hruskova, M. M. How granivorous Coreus marginatus (Hemiptera: Cereidae) recognizes its food. Acta Ethol. 9, 26–30 (2006).
Google Scholar
Ardenghi, N., Mulch, A., Pross, J. & Niedermeyer, E. M. Leaf wax n-alkane extraction: an optimized procedure. Org. Geochem. 113, 283–292 (2017).
Google Scholar
Takahashi, S. & Gassa, A. Roles of cuticular hydrocarbons in intra- and interspecific recognition behavior of two Rhinotermitidae species. J. Chem. Ecol. 21, 1837–1845 (1995).
Google Scholar
Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Nobre, J. S. & Singer, J. D. M. Residual analysis for linear mixed models. Biom. J. 49, 863–875 (2007).
Google Scholar
Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).
Google Scholar
Source: Ecology - nature.com