in

Seedling ectomycorrhization is central to conifer forest restoration: a case study from Kashmir Himalaya

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 4, 599–610 (2018).

    Article 

    Google Scholar 

  • Verdone, M. & Seidl, A. Time, space, place, and the Bonn Challenge global forest restoration target. Restor. Ecol. 25, 903–911 (2017).

    Article 

    Google Scholar 

  • Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stanturf, J. A., Palik, B. J. & Dumroese, R. K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 331, 292–323 (2014).

    Article 

    Google Scholar 

  • Wang, J. et al. Use of direct seeding and seedling planting to restore Korean pine (Pinus koraiensis Sieb. Et Zucc.) in secondary forests of Northeast China. For. Ecol. Manag. 493, 119243 (2021).

    Article 

    Google Scholar 

  • Han, A. R., Kim, H. J., Jung, J. B. & Park, P. S. Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. For. Ecol. Manag. 429, 579–588 (2018).

    Article 

    Google Scholar 

  • Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).

    Article 

    Google Scholar 

  • Hawkins, B. J., Jones, M. D. & Kranabetter, J. M. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New For. 46, 747–771 (2015).

    Article 

    Google Scholar 

  • Perry, D. A., Molina, R. & Amaranthus, M. P. Mycorrhizae, mycorrhizospheres, and reforestation: Current knowledge and research needs. Can. J. For. Res. 17, 929–940 (1987).

    Article 

    Google Scholar 

  • Duñabeitia, M. K. et al. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14, 11–18 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Rincón, A., De Felipe, M. R. & Fernández-Pascual, M. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18, 23–32 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Sanchez-Zabala, J. et al. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23, 627–640 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sousa, N. R., Franco, A. R., Oliveira, R. S. & Castro, P. M. Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. For. Ecol. Manag. 320, 50–55 (2014).

    Article 

    Google Scholar 

  • Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. & Bhatnagar, J. M. Back to roots: The role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).

    Article 

    Google Scholar 

  • Jones, M. D., Durall, D. M. & Cairney, J. W. G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157, 399–422 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Policelli, N., Bruns, T. D., Vilgalys, R. & Nuñez, M. A. Suilloid fungi as global drivers of pine invasions. New Phytol. 222, 714–725 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Visser, S. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol. 129, 389–401 (1995).

    Article 

    Google Scholar 

  • Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders pinaceae invasions. Ecology 90, 2352–2359 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 130, 173–183 (2020).

    Article 

    Google Scholar 

  • Grossnickle, S. C. & Reid, C. P. P. The use of ectomycorrhizal conifer seedlings in the revegetation of a high-elevation mine site. Can. J. For. Res. 12, 354–361 (1982).

    Article 

    Google Scholar 

  • Teste, F. P., Schmidt, M. G., Berch, S. M., Bulmer, C. & Egger, K. N. Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings. Can. J. For. Res. 34, 2074–2088 (2004).

    Article 

    Google Scholar 

  • Trappe, J. M. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15, 203–222 (1977).

    Article 

    Google Scholar 

  • van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Finlay, R. D., Frostegård, Å. & Sonnerfeldt, A. M. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl ex. Loud. New Phytol. 120, 105–115 (1992).

    Article 

    Google Scholar 

  • Keller, G. Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol. Res. 100, 989–998 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hatakeyama, T. & Ohmasa, M. Mycelial growth of strains of the genera Suillus and Boletinus in media with a wide range of concentrations of carbon and nitrogen sources. Mycoscience 45, 169–176 (2004).

    CAS 
    Article 

    Google Scholar 

  • Itoo, Z. A. & Reshi, Z. A. Effect of different nitrogen and carbon sources and concentrations on the mycelial growth of ectomycorrhizal fungi under in-vitro conditions. Scand. J. For. Res. 29, 619–628 (2014).

    Article 

    Google Scholar 

  • Lazarević, J., Stojičić, D. & Keča, N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. For. Syst. 25, 3 (2016).

    Google Scholar 

  • Valdés, R. C., Villarreal, R. M., García, F. G., Morales, S. G. & Peña, S. S. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. South. For. 81, 23–30 (2019).

    Article 

    Google Scholar 

  • Daza, A. et al. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.: Fr.) Pers. Mycorrhiza 16, 133–136 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wani, A. A., Joshi, P. K., Singh, O. & Shafi, S. Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. J. Mt. Sci. 13, 1431–1441 (2016).

    Article 

    Google Scholar 

  • Chung, H. C., Kim, D. H. & Lee, S. S. Mycorrhizal formations and seedling growth of Pinus desiflora by in vitro synthesis with the inoculation of ectomycorrhizal fungi. Mycobiology 30, 70–75 (2002).

    Article 

    Google Scholar 

  • Barroetaveña, C., Cázares, E. & Rajchenberg, M. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: A comparison of species richness in native western North American forests and Patagonian plantations from Argentina. Mycorrhiza 17, 355–373 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Ekwebelam, S. A. Effect of mycorrhizal fungi on the growth and yield of Pinus oocarpa and Pinus caribaea var. bahamensis seedlings. E. Afr. Agric. For. J. 45, 290–295 (1980).

    Google Scholar 

  • Kasuya, M. C. M. & Igarashi, T. In vitro ectomycorrhizal formation in Picea glehnii seedlings. Mycorrhiza 6, 451–454 (1996).

    Article 

    Google Scholar 

  • Wang, E. J., Jeon, S. M., Jang, Y. & Ka, K. H. Mycelial growth of edible ectomycorrhizal fungi according to nitrogen sources. Korean J. Mycol. 44, 166–170 (2016).

    CAS 

    Google Scholar 

  • Dar, A. R. & Dar, G. H. Taxonomic appraisal of conifers of Kashmir Himalaya. Pak. J. Biol. Sci. 9, 859–867 (2006).

    Article 

    Google Scholar 

  • Adeleke, R. A., Nunthkumar, B., Roopnarain, A. & Obi, L. Applications of plant-microbe interactions in agro-ecosystems. In Microbiome in Plant Health and Disease 1–34 (Springer, 2019).

    Google Scholar 

  • Yamanaka, T. Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycol. Res. 103, 811–816 (1999).

    CAS 
    Article 

    Google Scholar 

  • Berredjem, A., Garnier, A., Putra, D. P. & Botton, B. Effect of nitrogen and carbon sources on growth and activities of NAD and NADP dependent isocitrate dehydrogenases of Laccaria bicolor. Mycol. Res. 102, 427–434 (1998).

    CAS 
    Article 

    Google Scholar 

  • Cairney, J. W. G. Intra-specific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9, 125–135 (1999).

    Article 

    Google Scholar 

  • France, R. C. & Reid, C. P. P. Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microb. Ecol. 10, 187–195 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kibar, B. & Peksen, A. Nutritional and environmental requirements for vegetative growth of edible ectomycorrhizal mushroom Tricholoma terreum. Zemdirb. Agric. 4, 409–414 (2011).

    Google Scholar 

  • Nygren, C. M. R. et al. Growth on nitrate and occurrence of nitrate reductase encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol. 180, 875–889 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rangel-Castro, I. J., Danell, E. & Taylor, A. F. Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12, 131–137 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jenkins, M. L., Cripps, C. L. & Gains-Germain, L. Scorched Earth: Suillus colonization of Pinus albicaulis seedlings planted in wildfire-impacted soil affects seedling biomass, foliar nutrient content, and isotope signatures. Plant Soil 425, 113–131 (2018).

    CAS 
    Article 

    Google Scholar 

  • Taudière, A., Richard, F. & Carcaillet, C. Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For. Ecol. Manag. 391, 446–457 (2017).

    Article 

    Google Scholar 

  • Bigelow, H. E. & Smith, A. H. The status of Lepista: A new section of Clitocybe. Brittonia 21, 144–177 (1969).

    Article 

    Google Scholar 

  • Kuo, M. Clitocybe Nuda. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/clitocybe_nuda.html (2010).

  • Mycobank. www.mycobank.org. Accessed on Jan 28, 2020. (2020).

  • Peck, C. H. Report of the Botanist 1869. Annu. Rep. N.Y. State Mus. Nat. Hist. 23, 27–135 (1873).

    Google Scholar 

  • Kuo, M. Cortinarius Distans. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/cortinarius_distans.html (2011).

  • Losinger, W. C. Germination and Growth of Some Ectomycorrhizal Basidiomycetes in Culture. Doctoral dissertation, Kalamazoo College (1980).

  • Norvell, L. L. & Exeter, R. L. Ectomycorrhizal epigeous basidiomycete diversity in Oregon Coast Range Pseudotsuga menziesii forests-preliminary observations. Memoirs 89, 159–190 (2004).

    Google Scholar 


  • Source: Ecology - nature.com

    Heating up

    A better way to quantify radiation damage in materials