Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 4, 599–610 (2018).
Google Scholar
Verdone, M. & Seidl, A. Time, space, place, and the Bonn Challenge global forest restoration target. Restor. Ecol. 25, 903–911 (2017).
Google Scholar
Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Stanturf, J. A., Palik, B. J. & Dumroese, R. K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 331, 292–323 (2014).
Google Scholar
Wang, J. et al. Use of direct seeding and seedling planting to restore Korean pine (Pinus koraiensis Sieb. Et Zucc.) in secondary forests of Northeast China. For. Ecol. Manag. 493, 119243 (2021).
Google Scholar
Han, A. R., Kim, H. J., Jung, J. B. & Park, P. S. Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. For. Ecol. Manag. 429, 579–588 (2018).
Google Scholar
Thomas, E. et al. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 333, 66–75 (2014).
Google Scholar
Hawkins, B. J., Jones, M. D. & Kranabetter, J. M. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New For. 46, 747–771 (2015).
Google Scholar
Perry, D. A., Molina, R. & Amaranthus, M. P. Mycorrhizae, mycorrhizospheres, and reforestation: Current knowledge and research needs. Can. J. For. Res. 17, 929–940 (1987).
Google Scholar
Duñabeitia, M. K. et al. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14, 11–18 (2004).
Google Scholar
Rincón, A., De Felipe, M. R. & Fernández-Pascual, M. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18, 23–32 (2007).
Google Scholar
Sanchez-Zabala, J. et al. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23, 627–640 (2013).
Google Scholar
Sousa, N. R., Franco, A. R., Oliveira, R. S. & Castro, P. M. Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. For. Ecol. Manag. 320, 50–55 (2014).
Google Scholar
Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. & Bhatnagar, J. M. Back to roots: The role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).
Google Scholar
Jones, M. D., Durall, D. M. & Cairney, J. W. G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157, 399–422 (2003).
Google Scholar
Policelli, N., Bruns, T. D., Vilgalys, R. & Nuñez, M. A. Suilloid fungi as global drivers of pine invasions. New Phytol. 222, 714–725 (2019).
Google Scholar
Visser, S. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol. 129, 389–401 (1995).
Google Scholar
Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders pinaceae invasions. Ecology 90, 2352–2359 (2009).
Google Scholar
Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 130, 173–183 (2020).
Google Scholar
Grossnickle, S. C. & Reid, C. P. P. The use of ectomycorrhizal conifer seedlings in the revegetation of a high-elevation mine site. Can. J. For. Res. 12, 354–361 (1982).
Google Scholar
Teste, F. P., Schmidt, M. G., Berch, S. M., Bulmer, C. & Egger, K. N. Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings. Can. J. For. Res. 34, 2074–2088 (2004).
Google Scholar
Trappe, J. M. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15, 203–222 (1977).
Google Scholar
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).
Google Scholar
Finlay, R. D., Frostegård, Å. & Sonnerfeldt, A. M. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl ex. Loud. New Phytol. 120, 105–115 (1992).
Google Scholar
Keller, G. Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol. Res. 100, 989–998 (1996).
Google Scholar
Hatakeyama, T. & Ohmasa, M. Mycelial growth of strains of the genera Suillus and Boletinus in media with a wide range of concentrations of carbon and nitrogen sources. Mycoscience 45, 169–176 (2004).
Google Scholar
Itoo, Z. A. & Reshi, Z. A. Effect of different nitrogen and carbon sources and concentrations on the mycelial growth of ectomycorrhizal fungi under in-vitro conditions. Scand. J. For. Res. 29, 619–628 (2014).
Google Scholar
Lazarević, J., Stojičić, D. & Keča, N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. For. Syst. 25, 3 (2016).
Valdés, R. C., Villarreal, R. M., García, F. G., Morales, S. G. & Peña, S. S. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. South. For. 81, 23–30 (2019).
Google Scholar
Daza, A. et al. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.: Fr.) Pers. Mycorrhiza 16, 133–136 (2006).
Google Scholar
Wani, A. A., Joshi, P. K., Singh, O. & Shafi, S. Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. J. Mt. Sci. 13, 1431–1441 (2016).
Google Scholar
Chung, H. C., Kim, D. H. & Lee, S. S. Mycorrhizal formations and seedling growth of Pinus desiflora by in vitro synthesis with the inoculation of ectomycorrhizal fungi. Mycobiology 30, 70–75 (2002).
Google Scholar
Barroetaveña, C., Cázares, E. & Rajchenberg, M. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: A comparison of species richness in native western North American forests and Patagonian plantations from Argentina. Mycorrhiza 17, 355–373 (2007).
Google Scholar
Ekwebelam, S. A. Effect of mycorrhizal fungi on the growth and yield of Pinus oocarpa and Pinus caribaea var. bahamensis seedlings. E. Afr. Agric. For. J. 45, 290–295 (1980).
Kasuya, M. C. M. & Igarashi, T. In vitro ectomycorrhizal formation in Picea glehnii seedlings. Mycorrhiza 6, 451–454 (1996).
Google Scholar
Wang, E. J., Jeon, S. M., Jang, Y. & Ka, K. H. Mycelial growth of edible ectomycorrhizal fungi according to nitrogen sources. Korean J. Mycol. 44, 166–170 (2016).
Google Scholar
Dar, A. R. & Dar, G. H. Taxonomic appraisal of conifers of Kashmir Himalaya. Pak. J. Biol. Sci. 9, 859–867 (2006).
Google Scholar
Adeleke, R. A., Nunthkumar, B., Roopnarain, A. & Obi, L. Applications of plant-microbe interactions in agro-ecosystems. In Microbiome in Plant Health and Disease 1–34 (Springer, 2019).
Yamanaka, T. Utilization of inorganic and organic nitrogen in pure cultures by saprotrophic and ectomycorrhizal fungi producing sporophores on urea-treated forest floor. Mycol. Res. 103, 811–816 (1999).
Google Scholar
Berredjem, A., Garnier, A., Putra, D. P. & Botton, B. Effect of nitrogen and carbon sources on growth and activities of NAD and NADP dependent isocitrate dehydrogenases of Laccaria bicolor. Mycol. Res. 102, 427–434 (1998).
Google Scholar
Cairney, J. W. G. Intra-specific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9, 125–135 (1999).
Google Scholar
France, R. C. & Reid, C. P. P. Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microb. Ecol. 10, 187–195 (1984).
Google Scholar
Kibar, B. & Peksen, A. Nutritional and environmental requirements for vegetative growth of edible ectomycorrhizal mushroom Tricholoma terreum. Zemdirb. Agric. 4, 409–414 (2011).
Nygren, C. M. R. et al. Growth on nitrate and occurrence of nitrate reductase encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol. 180, 875–889 (2008).
Google Scholar
Rangel-Castro, I. J., Danell, E. & Taylor, A. F. Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12, 131–137 (2002).
Google Scholar
Jenkins, M. L., Cripps, C. L. & Gains-Germain, L. Scorched Earth: Suillus colonization of Pinus albicaulis seedlings planted in wildfire-impacted soil affects seedling biomass, foliar nutrient content, and isotope signatures. Plant Soil 425, 113–131 (2018).
Google Scholar
Taudière, A., Richard, F. & Carcaillet, C. Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For. Ecol. Manag. 391, 446–457 (2017).
Google Scholar
Bigelow, H. E. & Smith, A. H. The status of Lepista: A new section of Clitocybe. Brittonia 21, 144–177 (1969).
Google Scholar
Kuo, M. Clitocybe Nuda. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/clitocybe_nuda.html (2010).
Mycobank. www.mycobank.org. Accessed on Jan 28, 2020. (2020).
Peck, C. H. Report of the Botanist 1869. Annu. Rep. N.Y. State Mus. Nat. Hist. 23, 27–135 (1873).
Kuo, M. Cortinarius Distans. Retrieved from MushroomExpert.Com. http://www.mushroomexpert.com/cortinarius_distans.html (2011).
Losinger, W. C. Germination and Growth of Some Ectomycorrhizal Basidiomycetes in Culture. Doctoral dissertation, Kalamazoo College (1980).
Norvell, L. L. & Exeter, R. L. Ectomycorrhizal epigeous basidiomycete diversity in Oregon Coast Range Pseudotsuga menziesii forests-preliminary observations. Memoirs 89, 159–190 (2004).
Source: Ecology - nature.com