Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–92.
Google Scholar
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeo- dactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.
Google Scholar
Amin SA, Parker MS, Armbrust EF. Interactions between Diatoms and Bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.
Google Scholar
Cirri E, Pohnert G. Algae- bacteria interactions that balance the planktonic microbiome. New Phytologist. 2019;223:100–6.
Mühlenbruch M, Grossart H, Eigemann F, Voss M. Mini‐review: Phytoplankton‐ derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.
Google Scholar
Koedooder C, Stock W, Willems A, Mangelinckx S, de Troch M, Vyverman W, et al. Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front Microbiol. 2019;10:1255.
Google Scholar
Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.
Google Scholar
von Scheibner M, Sommer U, Jürgens K. Tight coupling of glaciecola spp. and diatoms during cold-water phytoplankton spring blooms. Front Microbiol. 2017;8:27.
Zhang H, Hou F, Xie W, Wang K, Zhou X, Zhang D, et al. Interaction and assembly processes of abundant and rare microbial communities during a diatom bloom process. Environ Microbiol. 2020;22:1707–19.
Google Scholar
Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.
Google Scholar
Bigalke A, Pohnert G. Algicidal bacteria trigger contrasting responses in model diatom communities of different composition. MicrobiologyOpen. 2019;8:e00818.
Google Scholar
Meyer N, Pohnert G. Isolate-specific resistance to the algicidal bacterium Kordia algicida in the diatom Chaetoceros genus. Botanica Marina. 2019;62:527–35.
Google Scholar
Sison-Mangus MP, Jiang S, Tran KN, Kudela RM. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. 2014;8:63–76. https://doi.org/10.1038/ismej.2013.138
Google Scholar
Stock W, Blommaert L, de Troch M, Mangelinckx S, Willems A, Vyverman W, et al. Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiol Ecol. 2019;95:fiz171.
Google Scholar
Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.
Google Scholar
Ahern OM, Whittaker KA, Williams TC, Hunt DE, Rynearson TA. Host genotype structures the microbiome of a globally dispersed marine phytoplankton. Proc Natl Acad Sci. 2021;118:e2105207118.
Google Scholar
Vega NM, Gore J. Stochastic assembly produces heterogeneous communities in the Caenorhabditis elegans intestine. PLoS Biol. 2017;15:e2000633.
Google Scholar
Lazzaro BP, Fox GM. Host–microbe interactions: winning the colonization lottery. Curr Biol. 2017;27:R642–R644.
Google Scholar
Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci. 2011;108:14288–93.
Google Scholar
Foster KR, Schluter J, Coyte KZ, Rakoff-nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.
Google Scholar
Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.
Google Scholar
Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.
Google Scholar
Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:1–15.
Crenn K, Duffieux D, Jeanthon C. Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associa- tions. Front Microbiol. 2018;9:1–12.
Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.
Google Scholar
Guannel ML, Horner-Devine MC, Rocap G. Bacterial community composition differs with species and toxigenicity of the diatom Pseudo-nitzschia. Aquatic Microbial Ecol. 2011;64:117–33.
Ajani PA, Kahlke T, Siboni N, Carney R, Murray SA, Seymour JR. The microbiome of the cosmopolitan diatom Leptocylindrus reveals significant spatial and temporal variability. Front Microbiol. 2018;9:1–12.
Kaczmarska I, Ehrman JM, Bates SS, Green DH, Léger C, Harris J. Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillar- iophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae. 2005;4:725–41.
Sapp M, Wichels A, Gerdts G. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl Environ Microbiol. 2007;73:3117–20.
Google Scholar
Mönnich J, Tebben J, Bergemann J, Case R, Wohlrab S, Harder T. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. ISME J. 2020;14:1614–25.
Google Scholar
Baker LJ, Kemp PF. Exploring bacteria-diatom associations using single-cell whole genome amplification. Aquatic Microbial Ecol. 2014;72:73–88.
Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol. 2012;20:385–91.
Google Scholar
Goh C, Vallejos DFV, Nicotra AB, Mathesius U. The Impact of Beneficial Plant-Associated Microbes on Plant Phenotypic Plasticity. J Chem Ecol. 2013;826–39.
Vanormelingen P, Vanelslander B, Sato S, Gillard J, Trobajo R, Sabbe K, et al. Heterothallic sexual reproduction in the model diatom Cylindrotheca. Eur J Phycol. 2013;48:93–105.
Li H, Yang G, Sun Y, Wu S, Zhang X. Cylindrotheca closterium is a species complex as was evidenced by the variations of rbcL gene and SSU rDNA. J Ocean Univer China. 2007;6:167–74.
Stock W, Vanelslander B, Rüdiger F, Sabbe K, Vyverman W, Karsten U. Thermal niche differentiation in the benthic diatom Cylindrotheca closterium (Bacillar- iophyceae) complex. Front Microbiol. 2019;10:1395.
Google Scholar
de Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Micro Ecol. 2005;49:501–12.
Google Scholar
Najdek M, Blažina M, Djakovac T, Kraus R. The role of the diatom Cylindrotheca closterium in a mucilage event in the northern Adriatic Sea: Coupling with high salinity water intrusions. J Plankton Res. 2005;27:851–62.
Eaton Jw, Moss B. The estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11:584–95.
Anderson RA. (editor). Algal Culturing Techniques. Elsevier Academic Press; 2005.
Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial popula- tions by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.
Google Scholar
Tytgat B, Verleyen E, Sweetlove M, D’hondt S, Clercx P, van Ranst E, et al. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiol Ecol. 2016;92.
D’Hondt AS, Stock W, Blommaert L, Moens T, Sabbe K. Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. Marine Environ Res. 2018;140:78–89.
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
Google Scholar
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Google Scholar
Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxo- nomic classification of microbiome sequences. Microbiome. 2018;6:1–14.
Wright ES. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R Journal. 2016;8.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.
Google Scholar
Nawrocki EP. Structural RNA Homology Search and Alignment using Covariance Models. Washington University in St. Louis; 2009.
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
Google Scholar
Vanelslander B, Créach V, Vanormelingen P, Ernst A, Chepurnov VA, Sahan E, et al. Ecological differentiation between sympatric pseudocryptic species in the estuarine benthic diatom Navicula phyllepta (Bacillariophyceae). J Phycol. 2009;45:1278–89.
Google Scholar
Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modelling. 2002;153:51–68.
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Green- genes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolu- tionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.
Google Scholar
Stone L, Roberts A. The checkerboard score and species distributions. Oecologia. 1990;85:74–9.
Google Scholar
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.
Google Scholar
Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Con- tribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.
Google Scholar
Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54:427–32.
Chiarello M, Auguet JC, Bettarel Y, Bouvier C, Claverie T, Graham NAJ, et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome. 2018;6:1–14.
Easson CG, Thacker RW. Phylogenetic signal in the community structure of host- specific microbiomes of tropical marine sponges. Front Microbiol. 2014;5:1–11.
Swierts T, Cleary DFR, de Voogd NJ. Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol Ecol. 2018;94:1–12.
Mazel F, Davis KM, Loudon A, Kwong WK. Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life. Msystems. 2018;3:1–15.
Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci. 2020;117.7:3656–62.
Taylor JD, Cunliffe M. Coastal bacterioplankton community response to diatom- derived polysaccharide microgels. Environ Microbiol Rep. 2017;9:151–7.
Google Scholar
Becker JW, Berube PM, Follett CL, Waterbury JB, Chisholm SW, Delong EF, et al. Closely related phytoplankton species produce similar suites of dissolved organic matter. Front Microbiol. 2014;5:1–14.
Google Scholar
Jackrel SL, Yang JW, Schmidt KC, Denef VJ. Host specificity of microbiome assembly and its fitness effects in phytoplankton. ISME J. 2021;15:774–88.
Google Scholar
Eigemann F, Hilt S, Salka I, Grossart HP. Bacterial community composition asso- ciated with freshwater algae: Species specificity vs. dependency on environ- mental conditions and source community. FEMS Microbiol Ecol. 2013;83:650–63.
Google Scholar
Barreto Filho MM, Walker M, Ashworth MP, Morris JJ. Structure and Long-Term Stability of the Microbiome in Diverse Diatom Cultures. Microbiol Spectr. 2021;9:e00269–21.
Google Scholar
Horner-Devine MC, Bohannan BJM. Phylogenetic clustering and overdispersion in bacterial communities. Ecology. 2006;87:S100–8.
Google Scholar
Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci. 2015;112:6449–54.
Google Scholar
Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.
Google Scholar
Li Y, Shipley B, Price JN, Dantas V, de L, Tamme R, et al. Habitat filtering deter- mines the functional niche occupancy of plant communities worldwide. J Ecol. 2018;106:1001–9.
Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic variability despite stable functional structure across microbial com- munities. Nat Ecol Evol. 2016;1:0015.
Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:1–12.
Geng H, Belas R. Molecular mechanisms underlying Roseobacter–phytoplankton symbioses. Curr Opinion Biotechnol. 2010;21:332–8.
Google Scholar
Christie-Oleza JA, Sousoni D, Lloyd M, Armengaud J, Scanlan DJ. Nutrient recy- cling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat Microbiol. 2017;2:1–10.
Edmundson SJ, Huesemann MH. The dark side of algae cultivation: characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nanno- chloropsis salina and Picochlorum sp. Algal Res. 2015;12:470–6.
Grossart H-P. Interactions between marine bacteria and axenic various conditions in the lab. Aquatic Microbial Ecol. 1999;19:1–11.
Source: Ecology - nature.com