in

Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties

  • 1.

    United Nations. Transforming our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).

    Google Scholar 

  • 2.

    Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science (80-) 327, 812–818 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All (FAO, 2021). https://doi.org/10.4060/cb4474en.

    Book 

    Google Scholar 

  • 4.

    FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture (FAO, 2010). https://doi.org/10.4060/i4787e.

    Book 

    Google Scholar 

  • 5.

    Gepts, P. Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Sci. 46, 2278–2292 (2006).

    Google Scholar 

  • 6.

    McCouch, S. et al. Feeding the future. Nature 499, 23–24 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).

    PubMed 

    Google Scholar 

  • 8.

    Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).

    PubMed 

    Google Scholar 

  • 9.

    Fernández-Llamazares, Á. et al. Scientists’ warning to humanity on threats to indigenous and local knowledge systems. J. Ethnobiol. 41, 144–169 (2021).

    Google Scholar 

  • 10.

    FAOSTAT. Food and Agriculture Data. (2019). http://www.fao.org/faostat/en/#data/QC. (Accessed: 15th July 2021)

  • 11.

    Lebot, V. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids (CABI, 2009). https://doi.org/10.5822/978-1-61091-225-9_2.

    Book 

    Google Scholar 

  • 12.

    Gade, D. W. Names for Manihot esculenta: Geographical variations and lexical clarification. J. Lat. Am. Geogr. 1, 55–74 (2002).

    Google Scholar 

  • 13.

    McKey, D. & Delêtre, M. The emergence of cassava as a global crop. in Achievng Sustainable Cultivation of Cassava, Vol. 1 (ed. Hershey, C. H.) 3–32 (Burleigh Dodds Science Publishing, 2017). https://doi.org/10.19103/as.2016.0014.04.

  • 14.

    Howeler, R., Lutaladio, N. & Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification (Food and Agriculture Organization of the United Nations, 2013).

    Google Scholar 

  • 15.

    Allem, A. C. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet. Resour. Crop Evol. 41, 133–150 (1994).

    Google Scholar 

  • 16.

    Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA 96, 5586–5591 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Olsen, K. M. & Schaal, B. A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: Further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Olsen, K. M. SNPs, SSRs and inferences on cassava’s origin. Plant Mol. Biol. 56, 517–526 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Léotard, G. et al. Phylogeography and the origin of cassava: New insights from the northern rim of the Amazonian basin. Mol. Phylogenet. Evol. 53, 329–334 (2009).

    PubMed 

    Google Scholar 

  • 20.

    Mühlen, G. S. et al. Genetic diversity and population structure show different patterns of diffusion for bitter and sweet manioc in Brazil. Genet. Resour. Crop Evol. 66, 1773–1790 (2019).

    Google Scholar 

  • 21.

    Ménard, L., McKey, D., Mühlen, G. S., Clair, B. & Rowe, N. P. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness. PLoS ONE 8, e74727 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Brown, C. H., Clement, C. R., Epps, P., Luedeling, E. & Wichmann, S. The Paleobiolinguistics of domesticated manioc (Manihot esculenta). Ethnobiol. Lett. 4, 61–70 (2013).

    Google Scholar 

  • 23.

    Isendahl, C. The domestication and early spread of manioc (Manihot esculenta Crantz): A brief synthesis. Lat. Am. Antiq. 22, 452–468 (2011).

    Google Scholar 

  • 24.

    McKey, D., Elias, M., Pujol, B. & Duputié, A. Ecological approaches to crop domestication. in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability (eds. Gepts, P. et al.) 377–406 (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9781139019514.023.

  • 25.

    McKey, D. & Beckerman, S. Chemical ecology, plant evolution and traditional manioc cultivation systems. In Tropical forests, people and food. Biocultural interactions and applications to development (eds Hladik, C. M. et al.) 83–112 (Parthenon Carnforth and UNESCO, 1993).

    Google Scholar 

  • 26.

    Elias, M. & McKey, D. The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: An example involving cassava and a call for data. Acta Oecol. 21, 223–230 (2000).

    ADS 

    Google Scholar 

  • 27.

    Duputié, A., Massol, F., David, P., Haxaire, C. & McKey, D. Traditional Amerindian cultivators combine directional and ideotypic selection for sustainable management of cassava genetic diversity. J. Evol. Biol. 22, 1317–1325 (2009).

    PubMed 

    Google Scholar 

  • 28.

    Peroni, N., Kageyama, P. Y. & Begossi, A. Molecular differentiation, diversity, and folk classification of ‘sweet’ and ‘bitter’ cassava (Manihot esculenta) in Caiçara and Caboclo management systems (Brazil). Genet. Resour. Crop Evol. 54, 1333–1349 (2007).

    Google Scholar 

  • 29.

    Elias, M. et al. Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Mol. Ecol. 10, 1895–1907 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Martins, P. S. Dinâmica evolutiva em roças de caboclos amazônicos. in Scientific Papers of Paulo Sodero Martins 1941–1997: A tribute (eds. Veasey, E. A., Oliveira, G. C. X. & Pinheiro, J. B.) 217–228 (SBG, 2007).https://doi.org/10.1590/s0103-40142005000100013.

  • 31.

    Coomes, O. T. Of stakes, stems, and cuttings: The importance of local seed systems in traditional Amazonian societies. Prof. Geogr. 62, 323–334 (2010).

    Google Scholar 

  • 32.

    Dyer, G. A., González, C. & Lopera, D. C. Informal ‘seed’ systems and the management of gene flow in traditional agroecosystems: The case of cassava in Cauca, Colombia. PLoS ONE 6, e29067 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Salick, J., Cellinese, N. & Knapp, S. Indigenous diversity of cassava: Generation, maintenance, use and loss among the Amuesha, peruvian upper amazon. Econ. Bot. 51, 6–19 (1997).

    Google Scholar 

  • 34.

    Sambatti, J. B. M., Martins, P. S. & Ando, A. Folk taxonomy and evolutionary dynamics of cassava: A case study in Ubatuba, Brazil. Econ. Bot. 55, 93–105 (2001).

    Google Scholar 

  • 35.

    Heckler, S. & Zent, S. Piaroa manioc varietals: Hyperdiversity or social currency?. Hum. Ecol. 36, 679–697 (2008).

    Google Scholar 

  • 36.

    Delêtre, M., McKey, D. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl. Acad. Sci. USA 108, 18249–18254 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Sardos, J. et al. Evolution of cassava (Manihot esculenta Crantz) after recent introduction into a South Pacific Island system: The contribution of sex to the diversification of a clonally propagated crop. Genome 51, 912–921 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Ellen, R. & Soselisa, H. L. A comparative study of the socio-ecological concomitants of cassava (Manihot esculenta Crantz) diversity, local knowledge and management in Eastern Indonesia. Ethnobot. Res. Appl. 10, 15–35 (2012).

    Google Scholar 

  • 39.

    Burns, A. E., Gleadow, R., Cliff, J., Zacarias, A. & Cavagnaro, T. Cassava: The drought, war and famine crop in a changing world. Sustainability 2, 3572–3607 (2010).

    Google Scholar 

  • 40.

    Pujol, B., David, P. & McKey, D. Microevolution in agricultural environments: How a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol. Lett. 8, 138–147 (2005).

    Google Scholar 

  • 41.

    Mba, R. E. C. et al. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: Towards an SSR-based molecular genetic map of cassava. Theor. Appl. Genet. 102, 21–31 (2001).

    CAS 

    Google Scholar 

  • 42.

    de Oliveira, E. J. et al. Genome-wide selection in cassava. Euphytica 187, 263–276 (2012).

    CAS 

    Google Scholar 

  • 43.

    Ferguson, M. E., Shah, T., Kulakow, P. & Ceballos, H. A global overview of cassava genetic diversity. PLoS ONE 14, e0224763 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Wolfe, M. D. et al. Historical introgressions from a wild relative of modern cassava improved important traits and may be under balancing selection. Genetics 213, 1237–1253 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 34, 562–570 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Kuon, J. E. et al. Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible African cassava cultivars. BMC Biol. 17, 1–15 (2019).

    CAS 

    Google Scholar 

  • 47.

    Prochnik, S. et al. The cassava genome: Current progress, future directions. Trop. Plant Biol. 5, 88–94 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Rabbi, I. Y. et al. Tracking crop varieties using genotyping-by-sequencing markers: A case study using cassava (Manihot esculenta Crantz). BMC Genet. 16, 115 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Albuquerque, H. Y. G., do Carmo, C. D., Brito, A. C. & de Oliveira, E. J. Genetic diversity of Manihot esculenta Crantz germplasm based on single-nucleotide polymorphism markers. Ann. Appl. Biol. 173, 271–284 (2018).

    Google Scholar 

  • 50.

    Ogbonna, A. C. et al. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. Plant J. 105, 754–770 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Allendorf, F. W. Genetics and the conservation of natural populations: Allozymes to genomes. Mol. Ecol. 26, 420–430 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: Advances and applications. Nat. Rev. Genet. 13, 85–96 (2012).

    CAS 

    Google Scholar 

  • 53.

    Ahrens, C. W. et al. The search for loci under selection: Trends, biases and progress. Mol. Ecol. 27, 1342–1356 (2018).

    PubMed 

    Google Scholar 

  • 54.

    Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).

    PubMed 

    Google Scholar 

  • 55.

    Lotterhos, K. E. & Whitlock, M. C. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol. Ecol. 23, 2178–2192 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Pankin, A., Altmüller, J., Becker, C. & von Korff, M. Targeted resequencing reveals genomic signatures of barley domestication. New Phytol. 218, 1247–1259 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Allaby, R. G., Ware, R. L. & Kistler, L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol. Appl. 12, 29–37 (2019).

    PubMed 

    Google Scholar 

  • 60.

    Brown, T. A. Is the domestication bottleneck a myth?. Nat. Plants 5, 337–338 (2019).

    PubMed 

    Google Scholar 

  • 61.

    Gaillard, M. D. P., Glauser, G., Robert, C. A. M. & Turlings, T. C. J. Fine-tuning the ‘plant domestication-reduced defense’ hypothesis: Specialist vs generalist herbivores. New Phytol. 217, 355–366 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Hillocks, R. J. & Wydra, K. Bacterial, fungal and nematode diseases. In Cassava: Biology, Production and Utilization (eds Hillocks, R. J. et al.) 261–280 (CABI, 2002).

    Google Scholar 

  • 63.

    Jarvis, A., Ramirez-Villegas, J., Campo, B. V. H. & Navarro-Racines, C. Is cassava the answer to African climate change adaptation?. Trop. Plant Biol. 5, 9–29 (2012).

    Google Scholar 

  • 64.

    Hanks, S. K. Genomic analysis of the eukaryotic protein kinase superfamily: A perspective. Genome Biol. 4, 111 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Meng, X. & Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Champion, A., Kreis, M., Mockaitis, K., Picaud, A. & Henry, Y. Arabidopsis kinome: After the casting. Funct. Integr. Genomics 4, 163–187 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Lenser, T. & Theißen, G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 18, 704–714 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Gepts, P. The contribution of genetic and genomic approaches to plant domestication studies. Curr. Opin. Plant Biol. 18, 51–59 (2014).

    PubMed 

    Google Scholar 

  • 69.

    Ceballos, H. et al. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J. Agric. Food Chem. 55, 7469–7476 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Jennings, D. L. & Iglesias, C. Breeding for crop improvement. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 149–166 (CABI, 2002). https://doi.org/10.18520/cs/v114/i02/256-257.

  • 71.

    Meyer, R. S. & Purugganan, M. D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).

    PubMed 

    Google Scholar 

  • 73.

    Elias, M., Lenoir, H. & McKey, D. Propagule quantity and quality in traditional Makushi farming of cassava (Manihot esculenta): A case study for understanding domestication and evolution of vegetatively propagated crops. Genet. Resour. Crop Evol. 54, 99–115 (2007).

    Google Scholar 

  • 74.

    Zohary, D. Unconscious selection and the evolution of domesticated plants. Econ. Bot. 58, 5–10 (2004).

    Google Scholar 

  • 75.

    Lamberti, G., Gügel, I. L., Meurer, J., Soll, J. & Schwenkert, S. The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. Plant Physiol. 157, 70–85 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Pujol, B. et al. Evolution under domestication: Contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytol. 166, 305–318 (2005).

    PubMed 

    Google Scholar 

  • 77.

    Halkier, B. A. & Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 80.

    An, F. et al. Domestication syndrome is investigated by proteomic analysis between cultivated cassava (Manihot esculenta Crantz) and its wild relatives. PLoS ONE 11, e0152154 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Alves, A. A. C. Cassava botany and physiology. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 67–89 (CABI, 2002). https://doi.org/10.1079/9780851995243.0067.

  • 82.

    Alves, A. A. C. & Setter, T. L. Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Ann. Bot. 94, 605–613 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: Applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).

    PubMed 
    MATH 

    Google Scholar 

  • 84.

    Arnold, B., Corbett-Detig, R. B., Hartl, D. & Bomblies, K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22, 3179–3190 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Alves-Pereira, A. et al. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia. Evol. Appl. 13, 342–361 (2020).

    PubMed 

    Google Scholar 

  • 86.

    Bradbury, E. J. et al. Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am. J. Bot. 100, 857–866 (2013).

    PubMed 

    Google Scholar 

  • 87.

    Kates, H. R. et al. Targeted sequencing suggests wild-crop gene flow is central to different genetic consequences of two independent pumpkin domestications. Front. Ecol. Evol. 9, 618380 (2021).

    Google Scholar 

  • 88.

    Talavera, A., Soorni, A., Bombarely, A., Matas, A. J. & Hormaza, J. I. Genome-wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Sci. Rep. 9, 20137 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: Tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Ross-Ibarra, J., Morrell, P. L. & Gaut, B. S. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl. Acad. Sci. USA 104, 8641–8648 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Ogbonna, A. C., Braatz de Andrade, L. R., Mueller, L. A., de Oliveira, E. J. & Bauchet, G. J. Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. Theor. Appl. Genet. https://doi.org/10.1007/s00122-021-03775-5 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    McKey, D., Cavagnaro, T. R., Cliff, J. & Gleadow, R. Chemical ecology in coupled human and natural systems: People, manioc, multitrophic interactions and global change. Chemoecology 20, 109–133 (2010).

    CAS 

    Google Scholar 

  • 93.

    Clement, C. R., de Cristo-Araújo, M., Coppens d’Eeckenbrugge, G., Alves Pereira, A. & Picanço-Rodrigues, D. Origin and domestication of native Amazonian crops. Diversity 2, 72–106 (2010).

    Google Scholar 

  • 94.

    Peña-Venegas, C. P., Stomph, T. J., Verschoor, G., Lopez-Lavalle, L. A. B. & Struik, P. C. Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity 6, 792–826 (2014).

    Google Scholar 

  • 95.

    Moreira, P. A. et al. Diversity of treegourd (Crescentia cujete) suggests introduction and prehistoric dispersal routes into Amazonia. Front. Ecol. Evol. 5, 150 (2017).

    Google Scholar 

  • 96.

    Clement, C. R. et al. Origin and dispersal of domesticated peach palm. Front. Ecol. Evol. 5, 148 (2017).

    Google Scholar 

  • 97.

    Mutegi, E. et al. Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor. Appl. Genet. 122, 989–1004 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 98.

    Roullier, C., Rossel, G., Tay, D., McKey, D. & Lebot, V. Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Mol. Ecol. 20, 3963–3977 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 99.

    Alves-Pereira, A. et al. Patterns of nuclear and chloroplast genetic diversity and structure of manioc along major Brazilian Amazonian rivers. Ann. Bot. 121, 625–639 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Siqueira, M. V. B. M. et al. Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats. Genet. Mol. Biol. 32, 104–110 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Allem, A. C. The origins and taxonomy of cassava. in Cassava: Biology, Production and Utilization (eds. Hillocks, R. J., Thresh, J. M. & Bellotti, A.) 1–16 (CABI, 2002). https://doi.org/10.1079/9780851995243.0001.

  • 102.

    Barbieri, R. L., Gomes, J. C. C., Alercia, A. & Padulosi, S. Agricultural biodiversity in southern Brazil: Integrating efforts for conservation and use of neglected and underutilized species. Sustainability 6, 741–757 (2014).

    Google Scholar 

  • 103.

    Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 111, 4001–4006 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Peroni, N. & Hanazaki, N. Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric. Ecosyst. Environ. 92, 171–183 (2002).

    Google Scholar 

  • 105.

    Peroni, N. & Martins, P. S. Influência da dinâmica agrícola itinerante na geração de diversidade de etnovariedades cultivadas vegetativamente. Interciencia 25, 22–29 (2000).

    Google Scholar 

  • 106.

    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 19, 11–15 (1987).

    Google Scholar 

  • 107.

    Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Andrews, A. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  • 109.

    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 112.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 113.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67–77 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 115.

    R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.r-project.org/. (Accessed: 15th January 2018).

  • 116.

    Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M. & Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193, 929–941 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y. ) 38, 1358–1370 (1984).

    CAS 

    Google Scholar 

  • 118.

    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    Google Scholar 

  • 119.

    Bonhomme, M. et al. Detecting selection in population trees: The Lewontin and Krakauer test extended. Genetics 186, 241–262 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105, 767–779 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 122.

    Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Gautier, M., Klassmann, A. & Vitalis, R. rehh 2.0: A reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol. Ecol. Resour. 17, 78–90 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 124.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polyorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6, 1–13 (2012).

    Google Scholar 

  • 125.

    Ten Blake, J. A. quick tips for using the Gene Ontology. PLoS Comput. Biol. 9, e1003343 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 126.

    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Alexa, A. & Rahnenführer, J. TopGO: Enrichment analysis for Gene Ontology. R package version 2.44.0. (2021).

  • 128.

    Osuna-Cruz, C. M. et al. PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 46, D1197–D1201 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 129.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 130.

    Paquette, S. R. Useful Functions for (Batch) File Conversion and Data Resampling in Microsatellite Datasets. https://cran.r-project.org/package=PopGenKit (2012).

  • 131.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 

    Google Scholar 

  • 132.

    Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 134.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 135.

    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Google Scholar 

  • 136.

    Jombart, T. & Ahmed, I. Genetics and population analysis. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Hotspots for social and ecological impacts from freshwater stress and storage loss

    MIT Energy Initiative launches the Future Energy Systems Center