Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
Google Scholar
Kearns, C. A., Inouye, D. W. & Waser, N. M. ENDANGERED MUTUALISMS: The conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).
Labandeira, C. C. A paleobiologic perspective on plant–insect interactions. Curr. Opin. Plant Biol. 16, 414–421 (2013).
Google Scholar
Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology. (Elsevier Science, 2014).
Bhutia, J. & Sharma, B. Diversity of Pollinators/ Visitors in Namchi, South Sikkim, India. 487–498 (2020).
Torres-Vanegas, F. et al. Tropical deforestation reduces plant mating quality by shifting the functional composition of pollinator communities. J. Ecol. 109, 1730–1746 (2021).
Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Pollination by nocturnal Lepidoptera, and the effects of light pollution: A review. Ecol. Entomol. 40, 187–198 (2015).
Google Scholar
Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).
Google Scholar
Chamorro, S., Heleno, R., Olesen, J. M., McMullen, C. K. & Traveset, A. Pollination patterns and plant breeding systems in the Galápagos: A review. Ann. Bot. 110, 1489–1501 (2012).
Google Scholar
Ramirez, N. Pollination specialization and time of pollination on a tropical Venezuelan plain: Variations in time and space. Bot. J. Linn. Soc. 145, 1–16 (2004).
Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biol. Lett. 16, 20190877 (2020).
Google Scholar
Young, H. J. Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am. J. Bot. 89, 433–440 (2002).
Google Scholar
Maeda, M., Maguchi, S., Nakamaru, Y., Takagi, D. & Fukuda, S. Prospective study of pollen dispersal prediction and identifying the usefulness of different parameters. Nihon Jibiinkoka Gakkai Kaiho 109, 455–460 (2006).
Google Scholar
Bertin, R. I. & Willson, M. F. Effectiveness of diurnal and nocturnal pollination of two milkweeds. Can. J. Bot. 58, 1744–1746 (1980).
Morse, D. H. & Fritz, R. S. Contributions of diurnal and nocturnal insects to the pollination of common milkweed (Asclepias syriaca L.) in a pollen-limited system. Oecologia 60, 190–197 (1983).
Jennersten, O. & Morse, D. H. The quality of pollination by diurnal and nocturnal insects visiting common milkweed Asclepias syriaca. Am. Midl. Nat. 125, 18 (1991).
Miyake, T. & Yahara, T. Why does the flower of Lonicera japonica open at dusk?. Can. J. Bot. 76, 1806–1811 (1998).
Atwater, M. M. Diversity and nectar hosts of flower-settling moths within a Florida sandhill ecosystem. J. Nat. Hist. 47, 2719–2734 (2013).
Grant, V. & Grant, K. A. Hawkmoth pollination of Mirabilis longiflora (Nyctaginaceae). Proc. Natl. Acad. Sci. 80, 1298–1299 (1983).
Google Scholar
Willmott, A. P. & Burquez, A. The pollination of Merremia palmeri (Convolvulaceae): Can Hawk moths be trusted?. Am. J. Bot. 83, 1050 (1996).
Wasserthal, L. T. The Pollinators of the Malagasy Star Orchids Angraecum sesquipedale, A. sororium and A. compactum and the Evolution of Extremely Long Spurs by Pollinator Shift. Bot. Acta 110, 343–359 (1997).
Miyake, T., Yamaoka, R. & Yahara, T. Floral scents of hawkmoth-pollinated flowers in Japan. J. Plant Res. 111, 199–205 (1998).
Google Scholar
Luyt, R. & Johnson, S. D. Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity. Plant Syst. Evol. 228, 49–62 (2001).
Rust, R. W., Vaissire, B. E. & Westrich, P. Pollinator biodiversity and floral resource use in Ecballium elaterium (Cucurbitaceae), a Mediterranean endemic. Apidologie 34, 29–42 (2003).
Jürgens, A., Witt, T. & Gottsberger, G. Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem. Syst. Ecol. 31, 345–357 (2003).
Oliveira, P. E., Gibbs, P. E. & Barbosa, A. A. Moth pollination of woody species in the Cerrados of Central Brazil: A case of so much owed to so few?. Plant Syst. Evol. 245, 41–54 (2004).
Morimoto, Y., Gikungu, M. & Maundu, P. Pollinators of the bottle gourd (Lagenaria siceraria) observed in Kenya. Int. J. Trop. Insect Sci. 24, (2004).
Willmer, P. Pollination and floral ecology. (Princeton University Press, 2011). https://doi.org/10.1515/9781400838943.
Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: The case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).
Chakraborty, P., Smith, B. & Basu, P. Pollen transport in the dark: Hawkmoths prefer non crop plants to crop plants in an agricultural landscape. Proc. Zool. Soc. 71, 299–303 (2018).
Proctor, M., Yeo, P. & Lack, A. The natural history of pollination. (Timber Press, 1996).
Funamoto, D. & Sugiura, S. Settling moths as potential pollinators of Uncaria rhynchophylla (Rubiaceae). Eur. J. Entomol. 113, 497–501 (2016).
Funamoto, D. & Sugiura, S. Relative importance of diurnal and nocturnal pollinators for reproduction in the early spring flowering shrub Stachyurus praecox (Stachyuraceae). Plant Species Biol. 36, 94–101 (2021).
Buxton, M. N., Anderson, B. J. & Lord, J. M. The secret service—analysis of the available knowledge on moths as pollinators in New Zealand / Te pepe huna—he tātarihaka o te mātauraka rakahau ki kā pepe hai whakaaiai ki Aotearoa me Te Waipounamu. N. Z. J. Ecol. 42, 1–9 (2018).
Hahn, M. & Brühl, C. A. The secret pollinators: An overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact. 10, 21–28 (2016).
Makholela, T. & Manning, J. C. First report of moth pollination in Struthiola ciliata (Thymelaeaceae) in southern Africa. South Afr. J. Bot. 72, 597–603 (2006).
Google Scholar
Okamoto, T., Kawakita, A. & Kato, M. Floral adaptations to nocturnal moth pollination in Diplomorpha (Thymelaeaceae). Plant Species Biol. 23, 192–201 (2008).
Paul, M. Impact of urbanization on moth (Insecta: Lepidoptera: Heterocera) diversity across different urban landscapes of Delhi India. Acta Ecol. Sin. 41, 204–209 (2021).
Subhakar, G. & Sreedevi, K. Nocturnal insect pollinator diversity in bottle gourd and ridge gourd in southern Andhra Pradesh. Curr. Biot. 9, 137–144 (2015).
Chakraborty, P., Chatterjee, S., Smith, B. M. & Basu, P. Seasonal dynamics of plant pollinator networks in agricultural landscapes: How important is connector species identity in the network?. Oecologia 196, 825–837 (2021).
Google Scholar
Chakraborty, P., Mukherjee, P. A., Laha, S. & Gupta, S. K. The influence of floral traits on insect foraging behaviour on medicinal plants in an urban garden of eastern India. J. Trop. Ecol. 37, 200–207 (2021).
Google Scholar
King, C., Ballantyne, G. & Willmer, P. G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818 (2013).
Devoto, M., Bailey, S., Craze, P. & Memmott, J. Understanding and planning ecological restoration of plant–pollinator networks. Ecol. Lett. 15, 319–328 (2012).
Google Scholar
Saunders, M. E. Insect pollinators collect pollen from wind-pollinated plants: Implications for pollination ecology and sustainable agriculture. Insect Conserv. Divers. 11, 13–31 (2018).
Ssymank, A., Kearns, C. A., Pape, T. & Thompson, F. C. Pollinating Flies (Diptera): A major contribution to plant diversity and agricultural production. Biodiversity 9, 86–89 (2008).
Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).
Google Scholar
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
Google Scholar
Gong, Y.-B. et al. Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales): Ambophily in Gnetum. Plant Species Biol. 31, 272–279 (2016).
Niklas, K. J. A Biophysical Perspective on the Pollination Biology of Ephedra nevadensis and E. trifurca. Bot. Rev. 81, 28–41 (2015).
Kato, M., Inoue, T. & Nagamitsu, T. Pollination biology of Gnetum (Gnetaceae) in a LOWLAND MIXED DIPTEROCARP forest in Sarawak. Am. J. Bot. 82, 862–868 (1995).
Celedón-Neghme, C., Santamaría, L. & González-Teuber, M. The role of pollination drops in animal pollination in the Mediterranean gymnosperm Ephedra fragilis (Gnetales). Plant Ecol. 217, 1545–1552 (2016).
Costa, A. C. G. & Machado, I. C. Flowering dynamics and pollination system of the sedge Rhynchospora ciliata (Vahl) Kükenth (Cyperaceae): does ambophily enhance its reproductive success?: Ambophily in Rhynchospora ciliata. Plant Biol. 14, 881–887 (2012).
Google Scholar
Huang, L. et al. Beta diversity partitioning and drivers of variations in fish assemblages in a headwater stream: Lijiang River China. Water 11, 680 (2019).
Google Scholar
Schneider, D., Wink, M., Sporer, F. & Lounibos, P. Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89, 281–294 (2002).
Google Scholar
Wilson, G. W. Insect Pollination in the Cycad Genus Bowenia Hook, ex Hook. f. (Stangeriaceae)1. Biotropica 34, 438–441 (2002).
Terry, L. I. et al. Pollination of Australian Macrozamia cycads (Zamiaceae): effectiveness and behavior of specialist vectors in a dependent mutualism. Am. J. Bot. 92, 931–940 (2005).
Google Scholar
Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).
Shaheen, H., Ullah, Z., Khan, S. M. & Harper, D. M. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For. Ecol. Manag. 278, 138–145 (2012).
Shaheen, H., Mallik, N. M. & Dar, M. E. U. I. Species composition and community structure of subtropical forest stands in western himalayan foothills of kashmir. Pak. J. Bot. 47, 2151–2160 (2015).
Google Scholar
Bhutia, Y., Gudasalamani, R., Ganesan, R. & Saha, S. Assessing forest structure and composition along the altitudinal gradient in the State of Sikkim, Eastern Himalayas India. Forests 10, 633 (2019).
Dar, J. A. & Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya India. Environ. Monit. Assess. 187, 55 (2015).
Google Scholar
Kandel, P. et al. Plant diversity of the Kangchenjunga Landscape, Eastern Himalayas. Plant Divers. 41, 153–165 (2019).
Google Scholar
Leonhardt, S. D. & Blüthgen, N. A sticky affair: Resin collection by bornean stingless bees: resin collection by stingless bees. Biotropica 41, 730–736 (2009).
Nyeko, P., Edwards-Jones, G. & Day, R. K. Honeybee, Apis mellifera (Hymenoptera: Apidae), leaf damage on Alnus species in Uganda: A blessing or curse in agroforestry?. Bull. Entomol. Res. 92, 405–412 (2002).
Google Scholar
Koch, H., Corcoran, C. & Jonker, M. Honeydew collecting in malagasy stingless bees (Hymenoptera: Apidae: Meliponini) and observations on competition with invasive ants. Afr. Entomol. 19, 36–41 (2011).
Santas, L. A. Insects producing honeydew exploited by bees in Greece. Apidologie 14, 93–103 (1983).
Banza, P., Belo, A. D. F. & Evans, D. M. The structure and robustness of nocturnal Lepidopteran pollen-transfer networks in a Biodiversity Hotspot. Insect Conserv. Divers. 8, 538–546 (2015).
Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Improving the pollinator pantry: Restoration and management of open farmland ponds enhances the complexity of plant-pollinator networks. Agric. Ecosyst. Environ. 320, 107611 (2021).
Dormann, C. F. et al. bipartite: Visualising Bipartite Networks and Calculating Some (Ecological) Indices. (2021).
Karmawati, E. & Tobing, S. L. Laboratory biology of Achaea janata L. castor large semi-loopers. Ind. Crops Res. J. 1, 37–42 (1988).
Labouche, A. & Bernasconi, G. Cost limitation through constrained oviposition site in a plant-pollinator/seed predator mutualism. Funct. Ecol. 27, 509–521 (2013).
Ramakrishna & Alfred, J. R. B. Faunal resources of India. (Zoological Survey of India, 2007).
Lees, D. C. & Zilli, A. Moths: Their Biology, Diversity and Evolution | NHBS Field Guides & Natural History. (London Natural History Museum, 2020).
Holloway, J. D. Moths of Borneo. (Malayan Nature Journal, 2001).
Plant diversity in the Himalaya hotspot region: a volume to celebrate the completion of university service of Dr. Abhaya Prasad Das. (Bishen Singh Mahendra Pal Singh, 2018).
Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 1 1–560 (Taylor and Francis, 1892).
Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 2 1–640 (Taylor and Francis, 1894).
Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 3 1–582 (Taylor and Francis, 1895).
Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 4 1–632 (Taylor and Francis, 1896).
Kirti, J. S. & Singh, N. Arctiid moths of India. (Nature Books India, 2015).
Kirti, J. S. & Singh, N. Arctiid moths of India. vol. 2 (Nature Books India, 2016).
Moths of India. https://www.mothsofindia.org/.
iNaturalist. iNaturalist. iNaturalist https://www.inaturalist.org/users/sign_in.
Nieukerken, E. J. V. et al. Order Lepidoptera Linnaeus, 1758. In : Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 212–221 (2011).
PalDat. https://www.paldat.org/.
Global Pollen Project. Global Pollen Project. https://globalpollenproject.org/.
Agashe, S. N. & Caulton, E. Pollen and spores: applications with special emphasis on aerobiology and allergy. (Science Publishers, 2009).
Bhattacharya, K. et al. A textbook of palynology. (2014).
Stephen, A. Pollen—A microscopic wonder of plant kingdom. Int. J. Adv. Res. Biol. Sci. 1, 45–62 (2014).
Halbritter, H. et al. Illustrated Pollen Terminology. (Springer International Publishing, 2018). doi:https://doi.org/10.1007/978-3-319-71365-6.
Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).
Google Scholar
Rodriguez-Girones, M. A. & Santamaria, L. A new algorithm to calculate the nestedness temperature of presence-absence matrices. J. Biogeogr. 33, 924–935 (2006).
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).
Google Scholar
Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).
Google Scholar
Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17, 341–346 (2007).
Google Scholar
Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).
Google Scholar
Poisot, T., Lepennetier, G., Martinez, E., Ramsayer, J. & Hochberg, M. E. Resource availability affects the structure of a natural bacteria–bacteriophage community. Biol. Lett. 7, 201–204 (2011).
Google Scholar
Source: Ecology - nature.com