in

Settling moths are the vital component of pollination in Himalayan ecosystem of North-East India, pollen transfer network approach revealed

  • Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed 

    Google Scholar 

  • Kearns, C. A., Inouye, D. W. & Waser, N. M. ENDANGERED MUTUALISMS: The conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).

    Google Scholar 

  • Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).

    Google Scholar 

  • Labandeira, C. C. A paleobiologic perspective on plant–insect interactions. Curr. Opin. Plant Biol. 16, 414–421 (2013).

    PubMed 

    Google Scholar 

  • Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology. (Elsevier Science, 2014).

  • Bhutia, J. & Sharma, B. Diversity of Pollinators/ Visitors in Namchi, South Sikkim, India. 487–498 (2020).

  • Torres-Vanegas, F. et al. Tropical deforestation reduces plant mating quality by shifting the functional composition of pollinator communities. J. Ecol. 109, 1730–1746 (2021).

    Google Scholar 

  • Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Pollination by nocturnal Lepidoptera, and the effects of light pollution: A review. Ecol. Entomol. 40, 187–198 (2015).

    PubMed 

    Google Scholar 

  • Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    PubMed 

    Google Scholar 

  • Chamorro, S., Heleno, R., Olesen, J. M., McMullen, C. K. & Traveset, A. Pollination patterns and plant breeding systems in the Galápagos: A review. Ann. Bot. 110, 1489–1501 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramirez, N. Pollination specialization and time of pollination on a tropical Venezuelan plain: Variations in time and space. Bot. J. Linn. Soc. 145, 1–16 (2004).

    Google Scholar 

  • Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biol. Lett. 16, 20190877 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, H. J. Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am. J. Bot. 89, 433–440 (2002).

    PubMed 

    Google Scholar 

  • Maeda, M., Maguchi, S., Nakamaru, Y., Takagi, D. & Fukuda, S. Prospective study of pollen dispersal prediction and identifying the usefulness of different parameters. Nihon Jibiinkoka Gakkai Kaiho 109, 455–460 (2006).

    PubMed 

    Google Scholar 

  • Bertin, R. I. & Willson, M. F. Effectiveness of diurnal and nocturnal pollination of two milkweeds. Can. J. Bot. 58, 1744–1746 (1980).

    Google Scholar 

  • Morse, D. H. & Fritz, R. S. Contributions of diurnal and nocturnal insects to the pollination of common milkweed (Asclepias syriaca L.) in a pollen-limited system. Oecologia 60, 190–197 (1983).

  • Jennersten, O. & Morse, D. H. The quality of pollination by diurnal and nocturnal insects visiting common milkweed Asclepias syriaca. Am. Midl. Nat. 125, 18 (1991).

    Google Scholar 

  • Miyake, T. & Yahara, T. Why does the flower of Lonicera japonica open at dusk?. Can. J. Bot. 76, 1806–1811 (1998).

    Google Scholar 

  • Atwater, M. M. Diversity and nectar hosts of flower-settling moths within a Florida sandhill ecosystem. J. Nat. Hist. 47, 2719–2734 (2013).

    Google Scholar 

  • Grant, V. & Grant, K. A. Hawkmoth pollination of Mirabilis longiflora (Nyctaginaceae). Proc. Natl. Acad. Sci. 80, 1298–1299 (1983).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willmott, A. P. & Burquez, A. The pollination of Merremia palmeri (Convolvulaceae): Can Hawk moths be trusted?. Am. J. Bot. 83, 1050 (1996).

    Google Scholar 

  • Wasserthal, L. T. The Pollinators of the Malagasy Star Orchids Angraecum sesquipedale, A. sororium and A. compactum and the Evolution of Extremely Long Spurs by Pollinator Shift. Bot. Acta 110, 343–359 (1997).

  • Miyake, T., Yamaoka, R. & Yahara, T. Floral scents of hawkmoth-pollinated flowers in Japan. J. Plant Res. 111, 199–205 (1998).

    CAS 

    Google Scholar 

  • Luyt, R. & Johnson, S. D. Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity. Plant Syst. Evol. 228, 49–62 (2001).

    Google Scholar 

  • Rust, R. W., Vaissire, B. E. & Westrich, P. Pollinator biodiversity and floral resource use in Ecballium elaterium (Cucurbitaceae), a Mediterranean endemic. Apidologie 34, 29–42 (2003).

    Google Scholar 

  • Jürgens, A., Witt, T. & Gottsberger, G. Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem. Syst. Ecol. 31, 345–357 (2003).

    Google Scholar 

  • Oliveira, P. E., Gibbs, P. E. & Barbosa, A. A. Moth pollination of woody species in the Cerrados of Central Brazil: A case of so much owed to so few?. Plant Syst. Evol. 245, 41–54 (2004).

    Google Scholar 

  • Morimoto, Y., Gikungu, M. & Maundu, P. Pollinators of the bottle gourd (Lagenaria siceraria) observed in Kenya. Int. J. Trop. Insect Sci. 24, (2004).

  • Willmer, P. Pollination and floral ecology. (Princeton University Press, 2011). https://doi.org/10.1515/9781400838943.

  • Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: The case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).

  • Chakraborty, P., Smith, B. & Basu, P. Pollen transport in the dark: Hawkmoths prefer non crop plants to crop plants in an agricultural landscape. Proc. Zool. Soc. 71, 299–303 (2018).

    Google Scholar 

  • Proctor, M., Yeo, P. & Lack, A. The natural history of pollination. (Timber Press, 1996).

  • Funamoto, D. & Sugiura, S. Settling moths as potential pollinators of Uncaria rhynchophylla (Rubiaceae). Eur. J. Entomol. 113, 497–501 (2016).

    Google Scholar 

  • Funamoto, D. & Sugiura, S. Relative importance of diurnal and nocturnal pollinators for reproduction in the early spring flowering shrub Stachyurus praecox (Stachyuraceae). Plant Species Biol. 36, 94–101 (2021).

    Google Scholar 

  • Buxton, M. N., Anderson, B. J. & Lord, J. M. The secret service—analysis of the available knowledge on moths as pollinators in New Zealand / Te pepe huna—he tātarihaka o te mātauraka rakahau ki kā pepe hai whakaaiai ki Aotearoa me Te Waipounamu. N. Z. J. Ecol. 42, 1–9 (2018).

    Google Scholar 

  • Hahn, M. & Brühl, C. A. The secret pollinators: An overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact. 10, 21–28 (2016).

    Google Scholar 

  • Makholela, T. & Manning, J. C. First report of moth pollination in Struthiola ciliata (Thymelaeaceae) in southern Africa. South Afr. J. Bot. 72, 597–603 (2006).

    CAS 

    Google Scholar 

  • Okamoto, T., Kawakita, A. & Kato, M. Floral adaptations to nocturnal moth pollination in Diplomorpha (Thymelaeaceae). Plant Species Biol. 23, 192–201 (2008).

    Google Scholar 

  • Paul, M. Impact of urbanization on moth (Insecta: Lepidoptera: Heterocera) diversity across different urban landscapes of Delhi India. Acta Ecol. Sin. 41, 204–209 (2021).

    Google Scholar 

  • Subhakar, G. & Sreedevi, K. Nocturnal insect pollinator diversity in bottle gourd and ridge gourd in southern Andhra Pradesh. Curr. Biot. 9, 137–144 (2015).

    Google Scholar 

  • Chakraborty, P., Chatterjee, S., Smith, B. M. & Basu, P. Seasonal dynamics of plant pollinator networks in agricultural landscapes: How important is connector species identity in the network?. Oecologia 196, 825–837 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Chakraborty, P., Mukherjee, P. A., Laha, S. & Gupta, S. K. The influence of floral traits on insect foraging behaviour on medicinal plants in an urban garden of eastern India. J. Trop. Ecol. 37, 200–207 (2021).

    CAS 

    Google Scholar 

  • King, C., Ballantyne, G. & Willmer, P. G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818 (2013).

    Google Scholar 

  • Devoto, M., Bailey, S., Craze, P. & Memmott, J. Understanding and planning ecological restoration of plant–pollinator networks. Ecol. Lett. 15, 319–328 (2012).

    PubMed 

    Google Scholar 

  • Saunders, M. E. Insect pollinators collect pollen from wind-pollinated plants: Implications for pollination ecology and sustainable agriculture. Insect Conserv. Divers. 11, 13–31 (2018).

    Google Scholar 

  • Ssymank, A., Kearns, C. A., Pape, T. & Thompson, F. C. Pollinating Flies (Diptera): A major contribution to plant diversity and agricultural production. Biodiversity 9, 86–89 (2008).

    Google Scholar 

  • Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gong, Y.-B. et al. Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales): Ambophily in Gnetum. Plant Species Biol. 31, 272–279 (2016).

    Google Scholar 

  • Niklas, K. J. A Biophysical Perspective on the Pollination Biology of Ephedra nevadensis and E. trifurca. Bot. Rev. 81, 28–41 (2015).

  • Kato, M., Inoue, T. & Nagamitsu, T. Pollination biology of Gnetum (Gnetaceae) in a LOWLAND MIXED DIPTEROCARP forest in Sarawak. Am. J. Bot. 82, 862–868 (1995).

    Google Scholar 

  • Celedón-Neghme, C., Santamaría, L. & González-Teuber, M. The role of pollination drops in animal pollination in the Mediterranean gymnosperm Ephedra fragilis (Gnetales). Plant Ecol. 217, 1545–1552 (2016).

    Google Scholar 

  • Costa, A. C. G. & Machado, I. C. Flowering dynamics and pollination system of the sedge Rhynchospora ciliata (Vahl) Kükenth (Cyperaceae): does ambophily enhance its reproductive success?: Ambophily in Rhynchospora ciliata. Plant Biol. 14, 881–887 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, L. et al. Beta diversity partitioning and drivers of variations in fish assemblages in a headwater stream: Lijiang River China. Water 11, 680 (2019).

    CAS 

    Google Scholar 

  • Schneider, D., Wink, M., Sporer, F. & Lounibos, P. Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89, 281–294 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, G. W. Insect Pollination in the Cycad Genus Bowenia Hook, ex Hook. f. (Stangeriaceae)1. Biotropica 34, 438–441 (2002).

  • Terry, L. I. et al. Pollination of Australian Macrozamia cycads (Zamiaceae): effectiveness and behavior of specialist vectors in a dependent mutualism. Am. J. Bot. 92, 931–940 (2005).

    PubMed 

    Google Scholar 

  • Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).

    Google Scholar 

  • Shaheen, H., Ullah, Z., Khan, S. M. & Harper, D. M. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For. Ecol. Manag. 278, 138–145 (2012).

    Google Scholar 

  • Shaheen, H., Mallik, N. M. & Dar, M. E. U. I. Species composition and community structure of subtropical forest stands in western himalayan foothills of kashmir. Pak. J. Bot. 47, 2151–2160 (2015).

    CAS 

    Google Scholar 

  • Bhutia, Y., Gudasalamani, R., Ganesan, R. & Saha, S. Assessing forest structure and composition along the altitudinal gradient in the State of Sikkim, Eastern Himalayas India. Forests 10, 633 (2019).

    Google Scholar 

  • Dar, J. A. & Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya India. Environ. Monit. Assess. 187, 55 (2015).

    PubMed 

    Google Scholar 

  • Kandel, P. et al. Plant diversity of the Kangchenjunga Landscape, Eastern Himalayas. Plant Divers. 41, 153–165 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Leonhardt, S. D. & Blüthgen, N. A sticky affair: Resin collection by bornean stingless bees: resin collection by stingless bees. Biotropica 41, 730–736 (2009).

    Google Scholar 

  • Nyeko, P., Edwards-Jones, G. & Day, R. K. Honeybee, Apis mellifera (Hymenoptera: Apidae), leaf damage on Alnus species in Uganda: A blessing or curse in agroforestry?. Bull. Entomol. Res. 92, 405–412 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Koch, H., Corcoran, C. & Jonker, M. Honeydew collecting in malagasy stingless bees (Hymenoptera: Apidae: Meliponini) and observations on competition with invasive ants. Afr. Entomol. 19, 36–41 (2011).

    Google Scholar 

  • Santas, L. A. Insects producing honeydew exploited by bees in Greece. Apidologie 14, 93–103 (1983).

    Google Scholar 

  • Banza, P., Belo, A. D. F. & Evans, D. M. The structure and robustness of nocturnal Lepidopteran pollen-transfer networks in a Biodiversity Hotspot. Insect Conserv. Divers. 8, 538–546 (2015).

    Google Scholar 

  • Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Improving the pollinator pantry: Restoration and management of open farmland ponds enhances the complexity of plant-pollinator networks. Agric. Ecosyst. Environ. 320, 107611 (2021).

  • Dormann, C. F. et al. bipartite: Visualising Bipartite Networks and Calculating Some (Ecological) Indices. (2021).

  • Karmawati, E. & Tobing, S. L. Laboratory biology of Achaea janata L. castor large semi-loopers. Ind. Crops Res. J. 1, 37–42 (1988).

    Google Scholar 

  • Labouche, A. & Bernasconi, G. Cost limitation through constrained oviposition site in a plant-pollinator/seed predator mutualism. Funct. Ecol. 27, 509–521 (2013).

    Google Scholar 

  • Ramakrishna & Alfred, J. R. B. Faunal resources of India. (Zoological Survey of India, 2007).

  • Lees, D. C. & Zilli, A. Moths: Their Biology, Diversity and Evolution | NHBS Field Guides & Natural History. (London Natural History Museum, 2020).

  • Holloway, J. D. Moths of Borneo. (Malayan Nature Journal, 2001).

  • Plant diversity in the Himalaya hotspot region: a volume to celebrate the completion of university service of Dr. Abhaya Prasad Das. (Bishen Singh Mahendra Pal Singh, 2018).

  • Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 1 1–560 (Taylor and Francis, 1892).

  • Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 2 1–640 (Taylor and Francis, 1894).

  • Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 3 1–582 (Taylor and Francis, 1895).

  • Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 4 1–632 (Taylor and Francis, 1896).

  • Kirti, J. S. & Singh, N. Arctiid moths of India. (Nature Books India, 2015).

  • Kirti, J. S. & Singh, N. Arctiid moths of India. vol. 2 (Nature Books India, 2016).

  • Moths of India. https://www.mothsofindia.org/.

  • iNaturalist. iNaturalist. iNaturalist https://www.inaturalist.org/users/sign_in.

  • Nieukerken, E. J. V. et al. Order Lepidoptera Linnaeus, 1758. In : Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 212–221 (2011).

  • PalDat. https://www.paldat.org/.

  • Global Pollen Project. Global Pollen Project. https://globalpollenproject.org/.

  • Agashe, S. N. & Caulton, E. Pollen and spores: applications with special emphasis on aerobiology and allergy. (Science Publishers, 2009).

  • Bhattacharya, K. et al. A textbook of palynology. (2014).

  • Stephen, A. Pollen—A microscopic wonder of plant kingdom. Int. J. Adv. Res. Biol. Sci. 1, 45–62 (2014).

    Google Scholar 

  • Halbritter, H. et al. Illustrated Pollen Terminology. (Springer International Publishing, 2018). doi:https://doi.org/10.1007/978-3-319-71365-6.

  • Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez-Girones, M. A. & Santamaria, L. A new algorithm to calculate the nestedness temperature of presence-absence matrices. J. Biogeogr. 33, 924–935 (2006).

    Google Scholar 

  • Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17, 341–346 (2007).

    PubMed 

    Google Scholar 

  • Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).

    MATH 

    Google Scholar 

  • Poisot, T., Lepennetier, G., Martinez, E., Ramsayer, J. & Hochberg, M. E. Resource availability affects the structure of a natural bacteria–bacteriophage community. Biol. Lett. 7, 201–204 (2011).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise