Huijbers, P. M. C., Flach, C.-F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).
Google Scholar
Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of antimicrobial resistance. Science 367, 630–632 (2020).
Google Scholar
European Commission. Proposal for a revised Urban Wastewater Treatment Directive. European Commission https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en (2022).
US Centres for Disease Control and Prevention. COVID-19 impacts on environment (e.g., water, soil) and sanitation: addressing antimicrobials and antimicrobial resistant threats in the environment. US Centres for Disease Control and Prevention https://www.cdc.gov/drugresistance/pdf/covid19/COVID19-Impacts-AR-Environment-Sanitation-508.pdf (2021).
Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C. & Larsson, D. G. J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 200, 117261 (2021).
Google Scholar
Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).
Google Scholar
Newton, R. J. et al. Sewage reflects the microbiomes of human populations. mBio 6, e02574 (2015).
Google Scholar
Huijbers, P. M. C., Larsson, D. G. J. & Flach, C. F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 261, 114200 (2020).
Google Scholar
Laxminarayan, R. & Macauley, M. K. The Value of Infromation: Methodological Frontiers and New Applications in Environment and Health 1st edn (Springer Dordrecht, 2012).
Munk, P. et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 13, 7251 (2022).
Google Scholar
Source: Ecology - nature.com