in

Shoaling guppies evade predation but have deadlier parasites

  • Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade‐off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009).

    CAS 
    Article 

    Google Scholar 

  • Cressler, C. E., McLeod, D. V., Rozins, C., Van Den Hoogen, J. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Acevedo, M. A., Dillemuth, F. P., Flick, A. J., Faldyn, M. J. & Elderd, B. D. Virulence‐driven trade‐offs in disease transmission: a meta‐analysis. Evolution 73, 636–647 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).

    PubMed 
    Article 

    Google Scholar 

  • McKay, B., Ebell, M., Dale, A. P., Shen, Y. & Handel, A. Virulence-mediated infectiousness and activity trade-offs and their impact on transmission potential of influenza patients. Proc. R. Soc. B 287, 20200496 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bonneaud, C. et al. Experimental evidence for stabilizing selection on virulence in a bacterial pathogen. Evol. Lett. 4, 491–501 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Roode, J. C., Yates, A. J. & Altizer, S. Virulence–transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl Acad. Sci. USA 105, 7489–7494 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fraser, C., Hollingsworth, T. D., Chapman, R., de Wolf, F. & Hanage, W. P. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc. Natl Acad. Sci. USA 104, 17441–17446 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Choo, K., Williams, P. D. & Day, T. Host mortality, predation and the evolution of parasite virulence. Ecol. Lett. 6, 310–315 (2003).

    Article 

    Google Scholar 

  • Williams, P. D. & Day, T. Interactions between sources of mortality and the evolution of parasite virulence. Proc. R. Soc. B 268, 2331–2337 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gandon, S., Jansen, V. A. & Van Baalen, M. Host life history and the evolution of parasite virulence. Evolution 55, 1056–1062 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prado, F., Sheih, A., West, J. D. & Kerr, B. Coevolutionary cycling of host sociality and pathogen virulence in contact networks. J. Theor. Biol. 261, 561–569 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Herre, E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–1445 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boots, M. & Mealor, M. Local interactions select for lower pathogen infectivity. Science 315, 1284–1286 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog. 10, e1004387 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does multiple infection select for raised virulence? Trends Microbiol. 10, 401–405 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Peacor, S. D. & Werner, E. E. The contribution of trait-mediated indirect effects to the net effects of a predator. Proc. Natl Acad. Sci. USA 98, 3904–3908 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seppälä, O., Karvonen, A. & Valtonen, E. T. Shoaling behaviour of fish under parasitism and predation risk. Anim. Behav. 75, 145–150 (2008).

    Article 

    Google Scholar 

  • Lopez, L. K. & Duffy, M. A. Mechanisms by which predators mediate host–parasite interactions in aquatic systems. Trends Parasitol. 37, 890–906 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rigby, M. C. & Jokela, J. Predator avoidance and immune defence: costs and trade-offs in snails. Proc. R. Soc. B 267, 171–176 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krause, J., Ruxton, G. D., Ruxton, G. & Ruxton, I. G. Living in Groups (Oxford Univ. Press, 2002).

  • Godin, J.-G. J. Antipredator function of shoaling in teleost fishes: a selective review. Nat. Can. 113, 241–250 (1986).

    Google Scholar 

  • Gandon, S., van Baalen, M. & Jansen, V. A. The evolution of parasite virulence, superinfection, and host resistance. Am. Nat. 159, 658–669 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Magurran, A. E. Evolutionary Ecology: The Trinidadian Guppy (Oxford Univ. Press, 2005).

  • Magurran, A. E. & Seghers, B. H. Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour 118, 214–234 (1991).

    Article 

    Google Scholar 

  • Seghers, B. H. & Magurran, A. E. Predator inspection behaviour covaries with schooling tendency amongst wild guppy, Poecilia reticulata, populations in Trinidad. Behaviour 128, 121–134 (1994).

    Article 

    Google Scholar 

  • Huizinga, M., Ghalambor, C. & Reznick, D. The genetic and environmental basis of adaptive differences in shoaling behaviour among populations of Trinidadian guppies, Poecilia reticulata. J. Evolut. Biol. 22, 1860–1866 (2009).

    CAS 
    Article 

    Google Scholar 

  • Stephenson, J. F., Van Oosterhout, C., Mohammed, R. S. & Cable, J. Parasites of Trinidadian guppies: evidence for sex‐ and age‐specific trait‐mediated indirect effects of predators. Ecology 96, 489–498 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Richards, E. L., Van Oosterhout, C. & Cable, J. Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS ONE 5, e13285 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Johnson, M. B., Lafferty, K. D., Van Oosterhout, C. & Cable, J. Parasite transmission in social interacting hosts: monogenean epidemics in guppies. PLoS ONE https://doi.org/10.1371/journal.pone.0022634 (2011).

  • Gotanda, K. M. et al. Adding parasites to the guppy-predation story: insights from field surveys. Oecologia 172, 155–166 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Fraser, B. A., Ramnarine, I. W. & Neff, B. D. Temporal variation at the MHC class IIB in wild populations of the guppy (Poecilia reticulata). Evolution 64, 2086–2096 (2010).

    PubMed 

    Google Scholar 

  • Stephenson, J. F. et al. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos. Trans. R. Soc. B 372, 20160093 (2017).

    Article 

    Google Scholar 

  • Cable, J. & Van Oosterhout, C. The impact of parasites on the life history evolution of guppies (Poecilia reticulata): the effects of host size on parasite virulence. Int. J. Parasitol. 37, 1449–1458 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reznick, D. N., Butler, M. J. IV, Rodd, F. H. & Ross, P. Life‐history evolution in guppies (Poecilia reticulata) 6. Differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).

    PubMed 

    Google Scholar 

  • Bonds, M. H., Keenan, D. C., Leidner, A. J. & Rohani, P. Higher disease prevalence can induce greater sociality: a game theoretic coevolutionary model. Evolution 59, 1859–1866 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Kerr, B., Neuhauser, C., Bohannan, B. J. & Dean, A. M. Local migration promotes competitive restraint in a host–pathogen ‘tragedy of the commons’. Nature 442, 75–78 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boots, M. & Sasaki, A. ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. B 266, 1933–1938 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459, 983–986 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dargent, F., Rolshausen, G., Hendry, A., Scott, M. & Fussmann, G. Parting ways: parasite release in nature leads to sex‐specific evolution of defence. J. Evolut. Biol. 29, 23–34 (2016).

    CAS 
    Article 

    Google Scholar 

  • Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).

    Article 

    Google Scholar 

  • Stephenson, J. F., van Oosterhout, C. & Cable, J. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance. Biol. Lett. 11, 20150806 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stephenson, J. F., Stevens, M., Troscianko, J. & Jokela, J. The size, symmetry, and color saturation of a male guppy’s ornaments forecast his resistance to parasites. Am. Naturalist 196, 597–608 (2020).

    Article 

    Google Scholar 

  • Godin, J.-G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003).

    Article 

    Google Scholar 

  • Van Oosterhout, C., Harris, P. & Cable, J. Marked variation in parasite resistance between two wild populations of the Trinidadian guppy, Poecilia reticulata (Pisces: Poeciliidae). Biol. J. Linn. Soc. 79, 645–651 (2003).

    Article 

    Google Scholar 

  • Hawley, D. M., Gibson, A. K., Townsend, A. K., Craft, M. E. & Stephenson, J. F. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 148, 274–288 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Janecka, M. J., Rovenolt, F. & Stephenson, J. F. How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale? Behav. Ecol. Sociobiol. 75, 1–20 (2021).

    Article 

    Google Scholar 

  • Tao, H., Li, L., White, M. C., Steel, J. & Lowen, A. C. Influenza A virus coinfection through transmission can support high levels of reassortment. J. Virol. 89, 8453–8461 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eshel, I. Evolutionary and continuous stability. J. Theor. Biol. 103, 99–111 (1983).

    Article 

    Google Scholar 

  • Hurford, A., Cownden, D. & Day, T. Next-generation tools for evolutionary invasion analyses. J. R. Soc. Interface 7, 561–571 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leimar, O. Multidimensional convergence stability. Evolut. Ecol. Res. 11, 191–208 (2009).

    Google Scholar 

  • Reznick, D., Bryant, M. & Holmes, D. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biol. 4, e7 (2005).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stephenson, J. F. Parasite-induced plasticity in host social behaviour depends on sex and susceptibility. Biol. Lett. https://doi.org/10.1098/rsbl.2019.0557 (2019).

  • Lopez, S. Acquired resistance affects male sexual display and female choice in guppies. Proc. R. Soc. B 265, 717–723 (1998).

    Article 

    Google Scholar 

  • van Oosterhout, C. et al. Selection by parasites in spate conditions in wild Trinidadian guppies (Poecilia reticulata). Int. J. Parasitol. 37, 805–812 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Pérez-Jvostov, F., Hendry, A. P., Fussmann, G. F. & Scott, M. E. Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia 170, 77–88 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer, 2003).

  • Carnell, R. lhs: Latin hypercube samples v.1.1.1 (R-Project, 2020).

  • Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. Sensitivity: Global sensitivity analysis of model outputs v.1.25.0 (R-Project, 2021).

  • Wright, D. & Krause, J. Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishes. Nat. Protoc. 1, 1828–1831 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar 

  • Griffiths, S. W. & Magurran, A. E. Sex and schooling behaviour in the Trinidadian guppy. Anim. Behav. 56, 689–693 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Magurran, A., Seghers, B., Carvalho, G. & Shaw, P. Behavioural consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of anti-predator behaviour in the wild. Proc. R. Soc. B 248, 117–122 (1992).

    Article 

    Google Scholar 

  • Sievers, C. et al. Reasons for the invasive success of a guppy (Poecilia reticulata) population in Trinidad. PLoS ONE 7, e38404 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mohammed, R. S. et al. Parasite diversity and ecology in a model species, the guppy (Poecilia reticulata) in Trinidad. R. Soc. Open Sci. 7, 191112 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lyles, A. M. Genetic Variation and Susceptibility to Parasites: Poeclia reticulata Infected with Gyrodactylus turnbulli. PhD dissertation, Princeton Univ. (1990).

  • Fraser, B. A. & Neff, B. D. Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reznick, D. & Endler, J. A. The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36, 160–177 (1982).

    PubMed 

    Google Scholar 

  • El‐Sabaawi, R. W. et al. Assessing the effects of guppy life history evolution on nutrient recycling: from experiments to the field. Freshw. Biol. 60, 590–601 (2015).

    Article 

    Google Scholar 

  • Liley, N. & Luyten, P. Geographic variation in the sexual behaviour of the guppy, Poecilia reticulata (Peters). Behaviour 95, 164–179 (1985).

    Article 

    Google Scholar 

  • Reznick, D. N. et al. Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. Am. Nat. 194, 671–692 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Lama Willa Baker challenges MIT audience to look beyond technology to solve the climate crises

    A trait database and updated checklist for European subterranean spiders