in

Short-interval fires increasing in the Alaskan boreal forest as fire self-regulation decays across forest types

  • Xu, L., Saatchi, S.S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A.A., Bowman, K., Worden, J., Liu, J., Yin, Y. & Domke, G. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7(27), p.eabe9829 (2001).

  • Hoecker, T. J., Higuera, P. E., Kelly, R. & Hu, F. S. Arctic & boreal paleofire records reveal drivers of fire activity & departures from Holocene variability. Ecology 101(9), e03096 (2020).

    Article 

    Google Scholar 

  • Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks & flux. Global Planet. Change 128, 24–30 (2015).

    Article 

    Google Scholar 

  • Kuhry, P. & Turunen, J. The postglacial development of boreal and subarctic peatlands in Boreal Peatland Ecosystems, 25–46 (Springer, 2006).

  • Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572(7770), 520–523 (2019).

    CAS 
    Article 

    Google Scholar 

  • Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health & global change. Science 349(6250), 819–822 (2015).

    CAS 
    Article 

    Google Scholar 

  • Walker, X. J. et al. Cross-scale controls on carbon emissions from boreal forest megafires. Global Change Biol. 24(9), 4251–4265 (2018).

    Article 

    Google Scholar 

  • Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. J. Future area burned in Canada. Clim. Change 72(1), 1–16 (2005).

    CAS 
    Article 

    Google Scholar 

  • Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biol. 15(3), 578–600 (2009).

    Article 

    Google Scholar 

  • Johnstone, J. F. & Chapin, F. S. Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems 9(2), 268–277 (2006).

    Article 

    Google Scholar 

  • Viereck, L.A. & Little, E.L. Alaska trees & shrubs. US Forest Service 410, (1972).

  • Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1(6), 535–545 (1998).

    Article 

    Google Scholar 

  • Buma, B. Disturbance interactions: characterization, prediction, & the potential for cascading effects. Ecosphere 6(4), 1–15 (2015).

    Article 

    Google Scholar 

  • Burton, P. J., Jentsch, A. & Walker, L. R. The ecology of disturbance interactions. Bioscience 70(10), 854–870 (2020).

    Article 

    Google Scholar 

  • Brown, C. D. & Johnstone, J. F. Once burned, twice shy: Repeat fires reduce seed availability & alter substrate constraints on Picea mariana regeneration. Forest Ecol. Manage. 266, 34–41 (2012).

    Article 

    Google Scholar 

  • Buma, B., Brown, C. D., Donato, D. C., Fontaine, J. B. & Johnstone, J. F. The impacts of changing disturbance regimes on serotinous plant populations & communities. Bioscience 63(11), 866–876 (2013).

    Article 

    Google Scholar 

  • Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. Bioscience 70(8), 659–673 (2020).

    Article 

    Google Scholar 

  • Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes & demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Enviro 13(5), 265–272 (2015).

    Article 

    Google Scholar 

  • Burns, R.M., & Honkala B.H. Silvics of North America US Department of Agriculture, Forest Service, Ag. Handbook 654, (1990).

  • Hayes, K. & Buma, B. Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience. Ecosphere 12(3), 03379 (2021).

    Article 

    Google Scholar 

  • Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372(6539), 280–283 (2021).

    CAS 
    Article 

    Google Scholar 

  • Viereck, L. A., Dyrness, C. T. & Foote, M. J. An overview of the vegetation & soils of the floodplain ecosystems of the Tanana River, interior Alaska. Can. J. For. Res. 23(5), 889–898 (1993).

    Article 

    Google Scholar 

  • Hoy, E. E., Turetsky, M. R. & Kasischke, E. S. More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Enviro. Res. Lett. 11(9), 095001 (2016).

    Article 

    Google Scholar 

  • Whitman, E., Parisien, M. A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire & drought overwhelm boreal forest resilience. Sci. Rep. 9(1), 1–12 (2019).

    Article 

    Google Scholar 

  • Greene, D. F. et al. The reduction of organic-layer depth by wildfire in the North American boreal forest & its effect on tree recruitment by seed. Can. J. For. Res. 37(6), 1012–1023 (2007).

    Article 

    Google Scholar 

  • Héon, J., Arseneault, D. & Parisien, M. A. Resistance of the boreal forest to high burn rates. PNAS 111(38), 13888–13893 (2014).

    Article 

    Google Scholar 

  • Buma, B., Weiss, S., Hayes, K. & Lucash, M. Wildland fire reburning trends across the US West suggest only short-term negative feedback & differing climatic effects. Enviro. Res. Lett. 15(3), 034026 (2020).

    Article 

    Google Scholar 

  • Thompson, D. K. et al. Fuel accumulation in a high-frequency boreal wildfire regime: from wetland to upland. Can. J. For. Res. 47(7), 957–964 (2017).

    Article 

    Google Scholar 

  • Kasischke, E. S. et al. Alaska’s changing fire regime—implications for the vulnerability of its boreal forests. Can. J. For. Res. 40(7), 1313–1324 (2010).

    Article 

    Google Scholar 

  • Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. PNAS 110(32), 13055–13060 (2013).

    CAS 
    Article 

    Google Scholar 

  • Gaboriau, D. M. et al. Temperature & fuel availability control fire size/severity in the boreal forest of central Northwest Territories, Canada. Quat. Sci. Rev. 250, 106697 (2020).

    Article 

    Google Scholar 

  • Johnstone, J. F., Rupp, T. S., Olson, M. & Verbyla, D. Modeling impacts of fire severity on successional trajectories & future fire behavior in Alaskan boreal forests. Landscape Ecol. 26(4), 487–500 (2011).

    Article 

    Google Scholar 

  • Hess, K. A. et al. Satellite-based assessment of grassland conversion & related fire disturbance in the Kenai Peninsula, Alaska. Rem. Sens. 11(3), 283 (2019).

    Article 

    Google Scholar 

  • Hollingsworth, T. N., Breen, A. L., Hewitt, R. E. & Mack, M. C. Does fire always accelerate shrub expansion in Arctic tundra? Examining a novel grass-dominated successional trajectory on the Seward Peninsula. A. A. A. Res. 53(1), 93–109 (2021).

    Google Scholar 

  • Turner, M. G., Romme, W. H. & Tinker, D. B. Surprises & lessons from the 1988 Yellowstone fires. Frontiers Ecol. Environ. 1(7), 351–358 (2003).

    Article 

    Google Scholar 

  • Shvidenko, A. Z. et al. Impact of wildfire in Russia between 1998–2010 on ecosystems & the global carbon budget. Dokl. Earth Sci. 441(2), 1678–1682 (2011).

    CAS 
    Article 

    Google Scholar 

  • Alaska Fire Service 2021. Alaska Interagency Coordination Center, Bureau of L& Management, Alaska Fire Service. https://fire.ak.blm.gov/arcgis/rest/services/Map&FeatureServices/FireHistory/MapServer/1

  • French, N. H. et al. Using Landsat data to assess fire & burn severity in the North American boreal forest region: an overview and summary of results. Int. J. Wildland Fire 17(4), 443–462 (2008).

    Article 

    Google Scholar 

  • Morimoto, M. & Juday, G. Perspectives on Sustainable Forest Management in Interior Alaska Boreal Forest: Recent History and Challenges. Forests 10(6), 484 (2019).

    Article 

    Google Scholar 

  • NASA/METI/AIST/Japan Spacesystems, & U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. distributed by NASA EOSDIS L& Processes DAAC, https://doi.org/10.5067/ASTER/ASTGTM.003 (2018)

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim 37(12), 4302–4315 (2017).

    Article 

    Google Scholar 

  • US Environmental Protection Agency, Level III Ecoregions of the Continental United States, Corvallis, Oregon: U.S. EPA— National Health & Environmental Effects Research Laboratory https://epa.gov/eco-research/level-iii-&-ivecoregions-continental-united-states (2013)

  • Wang, J.A., et al. ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014. ORNL DAAC, Oak Ridge, Tennessee, USA (2019).. https://doi.org/10.3334/ORNLDAAC/1691

  • Debeer, D. & Strobl, C. Conditional permutation importance revisited. BMC Bioinform. 21(1), 1–30 (2020).

    Article 

    Google Scholar 

  • Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for r&om forests. BMC Bioinform. 9(1), 1–11 (2008).

    Article 

    Google Scholar 

  • Moisen, G. & Frescino, T. Comparing five modelling techniques for predicting forest characteristics. Ecol. Mod. 157, 209–225 (2002).

    Article 

    Google Scholar 

  • R Core Team R: A language & environment for statistical computing (2021).

  • Pebesma, E.J. & Bivand, R.S. Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/. (2005)

  • Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R package version 3.4–5. (2020) https://CRAN.R-project.org/package=raster

  • Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).

    Article 

    Google Scholar 

  • Debeer, D., Hothorn, T. & Strobl, C permimp: Conditional Permutation Importance. R package version 1.0–1. https://CRAN.R-project.org/package=permimp (2021)

  • Schneider, G., Chicken, E., & Becvarik, R. NSM3:Functions and Datasets to Accompany Hollander, Wolfe, and Chicken – Nonparametric Statistical Methods, Third Edition. R package version 1.16. https://CRAN.R-project.org/package=NSM3 (2021)


  • Source: Ecology - nature.com

    Finding her way to fusion

    Q&A: Bettina Stoetzer on envisioning a livable future