in

Short-term mercury exposure disrupts muscular and hepatic lipid metabolism in a migrant songbird

  • Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394 (2020).

    Article 

    Google Scholar 

  • Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c04158 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • United Nations Environment Programme (UNEP). 2019. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland. https://www.unep.org/resources/publication/global-mercury-assessment-2018

  • Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J. & Faccio, S. D. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19, 697–709 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cristol, D. A. et al. The movement of aquatic mercury through terrestrial food webs. Science 320, 335 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. Encycl. Anthropocene 5, 181–194 (2018).

    Article 

    Google Scholar 

  • Whitney, M. C. & Cristol, D. A. Impacts of sublethal mercury exposure on birds: a detailed review. Rev. Environ. Contam. Toxicol. 244, 113–163 (2017).

    Google Scholar 

  • Seewagen, C. L. Threats of environmental mercury to birds: Knowledge gaps and priorities for future research. Bird Conserv. Int. 20, 112–123 (2010).

    Article 

    Google Scholar 

  • Seewagen, C. L. The threat of global mercury pollution to bird migration: Potential mechanisms and current evidence. Ecotoxicology 29, 1254–1267 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, Y., Branfireun, B. A., Hobson, K. A. & Guglielmo, C. G. Evidence of negative seasonal carry-over effects of breeding ground mercury exposure on survival of migratory songbirds. J. Avian Biol. 49, jav-01656 (2018).

    Article 

    Google Scholar 

  • Newton, I. Can conditions experienced during migration limit the population levels of birds?. J. Ornithol. 147, 146–166 (2006).

    Article 

    Google Scholar 

  • Klaassen, M., Hoye, B. J., Nolet, B. A. & Buttemer, W. A. Ecophysiology of avian migration in the face of current global hazards. Philos. Trans. R. Soc. B 367, 1719–1732 (2020).

    Article 

    Google Scholar 

  • Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Chang. 8, 992–996 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seewagen, C. L., Ma, Y., Morbey, Y. E. & Guglielmo, C. G. Stopover departure behavior and flight orientation of spring-migrant Yellow-rumped Warblers (Setophaga coronata) experimentally exposed to methylmercury. J. Ornithol. 160, 617–624 (2019).

    Article 

    Google Scholar 

  • Seewagen, C. L. Blood mercury levels and the stopover refueling performance of a long-distance migratory songbird. Can. J. Zool. 91, 41–45 (2013).

    CAS 
    Article 

    Google Scholar 

  • Adams, E. M., Williams, K. A., Olsen, B. J. & Evers, D. C. Mercury exposure in migrating songbirds: Correlations with physical condition. Ecotoxicology 29, 1240–1253 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, Y., Perez, C. R., Branfireun, B. A. & Guglielmo, C. G. Dietary exposure to methylmercury affects flight endurance in a migratory songbird. Environ. Pollut. 234, 894–901 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gerson, A. R., Cristol, D. A. & Seewagen, C. L. Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird. Environ. Pollut. 246, 790–796 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jenni, L. & Jenni-Eiermann, S. Fuel supply and metabolic constraints in migrating birds. J. Avian Biol. 29, 521–552 (1998).

    Article 

    Google Scholar 

  • McWilliams, S. R., Guglielmo, C., Pierce, B. & Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 35, 377–393 (2004).

    Article 

    Google Scholar 

  • Guglielmo, C. G. Move that fatty acid: Fuel selection and transport in migratory birds and bats. Integr. Comp. Biol. 50, 336–345 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Guglielmo, C. G. Obese super athletes: Fat-fueled migration in birds and bats. J. Exp. Biol. 221(Suppl_1), 165753 (2018).

    Article 

    Google Scholar 

  • Kawakami, T. et al. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol. Appl. Pharmacol. 258, 32–42 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yadetie, F. et al. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquat. Toxicol. 126, 314–325 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Park, K. & Seo, E. Association between toenail mercury and metabolic syndrome is modified by selenium. Nutrients 8, 424 (2016).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Caito, S. W., Newell-Caito, J., Martell, M., Crawford, N. & Aschner, M. Methylmercury induces metabolic alterations in Caenorhabditis elegans: Role for C/EBP transcription factor. Toxicol. Sci. 174, 112–123 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Edmonds, S. T., O’Driscoll, N. J., Hillier, N. K., Atwood, J. L. & Evers, D. C. Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environ. Pollut. 171, 148–154 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rowse, L. M., Rodewald, A. D., Mažeika, S. & Sullivan, P. Pathways and consequences of contaminant flux to Acadian flycatchers (Empidonax virescens) in urbanizing landscapes of Ohio, USA. Sci. Total Environ. 485, 461–467 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Marsh, R. L. Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird (Dumetella carolinensis). J. Comp. Physiol. 141, 417–423 (1981).

    CAS 
    Article 

    Google Scholar 

  • Guglielmo, C. G., Haunerland, N. H., Hochachka, P. W. & Williams, T. D. Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 282(5), R1405–R1413 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maillet, D. & Weber, J. M. Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: Evidence for natural doping. J. Exp. Biol. 210, 413–420 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weber, J. M. Metabolic fuels: Regulating fluxes to select mix. J. Exp. Biol. 214, 286–294 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Feige, J. N., Gelman, L., Michalik, L., Desvergne, B. & Wahli, W. From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid. Res. 45, 120–159 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bensinger, S. J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454, 470–477. https://doi.org/10.1038/nature07202 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ynalvez, R., Gutierrez, J. & Gonzalez-Cantu, H. Mini-review: Toxicity of mercury as a consequence of enzyme alteration. Biometals 29, 781–788 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gerson, A. R. & Guglielmo, C. G. Energetics and metabolite profiles during early flight in American robins (Turdus Migratorius). J. Comp. Physiol. B. 183, 983–991 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Price, E. R., McFarlan, J. T. & Guglielmo, C. G. Preparing for migration? The effects of photoperiod and exercise on muscle oxidative enzymes, lipid transporters, and phospholipids in white-crowned sparrows. Physiol. Biochem. Zool. 83, 252–262 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bradley, S. S., Dick, M. F., Guglielmo, C. G. & Timoshenko, A. V. Seasonal and flight-related variation of galectin expression in heart, liver and flight muscles of yellow-rumped warblers (Setophaga coronata). Glycoconj. J. 34, 603–611 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McFarlan, J. T., Bonen, A. & Guglielmo, C. G. Seasonal upregulation of fatty acid transporters in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis). J. Exp. Biol. 212, 2934–2940 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, Y., King, M. O., Harmon, E., Eyster, K. & Swanson, D. L. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds. J. Comp. Physiol. B. 185, 797–810 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dick, M. F. & Guglielmo, C. G. Dietary polyunsaturated fatty acids influence flight muscle oxidative capacity but not endurance flight performance in a migratory songbird. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 316(4), R362–R375 (2019).

    CAS 
    Article 

    Google Scholar 

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bittencourt, L. O. et al. Oxidative biochemistry disbalance and changes on proteomic profile in salivary glands of rats induced by chronic exposure to methylmercury. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2017/5653291 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, Q., Sun, N., Kou, H., Wang, H. & Zhao, H. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. Ecotoxicol. Environ. Saf. 164, 500–509 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nøstbakken, O. J. et al. Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquat. Toxicol. 108, 70–77 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Zink, E. M. Comparison of the mercury induced proteomes of Escherichia coli MG1655 with and without the NR1 plasmid. MSc thesis, Washington State University, Pullman, WA (2009).

  • Lundgren, B. O. & Kiessling, K. H. Seasonal variation in catabolic enzyme activities in breast muscle of some migratory birds. Oecologia 66, 468–471 (1985).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Banerjee, S. & Chaturvedi, C. M. Migratory preparation associated alterations in pectoralis muscle biochemistry and proteome in Palearctic-Indian emberizid migratory finch, red-headed bunting, Emberiza bruniceps. Comp. Biochem. Physiol. D Genom. Proteom. 17, 9–25 (2016).

    CAS 

    Google Scholar 

  • Dick, M. F. The long haul: migratory flight preparation and performance in songbirds. Ph.D. dissertation, University of Western Ontario, London, Canada (2017).

  • Driedzic, W. R., Crowe, H. L., Hicklin, P. W. & Sephton, D. H. Adaptations in pectoralis muscle, heart mass, and energy metabolism during premigratory fattening in semipalmated sandpipers (Calidris pusilla). Can. J. Zool. 71, 1602–1608 (1993).

    Article 

    Google Scholar 

  • De Moranville, K. J. et al. PPAR expression, muscle size and metabolic rates across the gray catbird’s annual cycle are greatest in preparation for fall migration. J. Exper. Biol. 222, 198028 (2019).

    Article 

    Google Scholar 

  • Zajac, D. M., Cerasale, D. J., Landman, S. & Guglielmo, C. G. Behavioral and physiological effects of photoperiod-induced migratory state and leptin on Zonotrichia albicollis: II. Effects on fatty acid metabolism. Gen. Comp. Endocrinol. 174, 269–275 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tinant, G. et al. Methylmercury displays pro-adipogenic properties in rainbow trout preadipocytes. Chemosphere 263, 127917 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cambier, S. et al. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int. J. Biochem. Cell Biol. 41, 791–799 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ferain, A. et al. Transcriptional effects of phospholipid fatty acid profile on rainbow trout liver cells exposed to methylmercury. Aquat. Toxicol. 199, 174–187 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Börchers, T., Højrup, P., Nielsen, S. U., Roepstorff, P., Spener, F., Knudsen, J. Revision of the amino acid sequence of human heart fatty acid-binding protein. In Cellular Fatty Acid-binding Proteins 127–133 (Springer, Boston, 1990).

  • Dörmann, P. et al. Amino acid exchange and covalent modification by cysteine and glutathione explain isoforms of fatty acid-binding protein occurring in bovine liver. J. Biol. Chem. 268, 16286–16292 (1993).

    PubMed 
    Article 

    Google Scholar 

  • Su, X. & Abumrad, N. A. Cellular fatty acid uptake: A pathway under construction. Trends Endocrinol. Metab. 20(2), 72–77 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Oort, M. M. et al. Each of the four intracellular cysteines of CD36 is essential for insulin-or AMP-activated protein kinase-induced CD36 translocation. Arch. Physiol. Biochem. 120, 40–49 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vallee, B. L. & Ulmer, D. D. Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem. 41, 91–128 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aschner, M. & Syversen, T. Methylmercury: Recent advances in the understanding of its neurotoxicity. Ther. Drug Monit. 27, 278–283 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kenow, K. P., Meyer, M. W., Hines, R. K. & Karasov, W. H. Distribution and accumulation of mercury in tissues of captive-reared common loon (Gavia immer) chicks. Environ. Toxicol. Chem. 26, 1047–1055 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Varian-Ramos, C. W., Whitney, M., Rice, G. W. & Cristol, D. A. Form of dietary methylmercury does not affect total mercury accumulation in the tissues of zebra finch. Bull. Environ. Contam. Toxicol. 99, 1–8 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rizzetti, D. A. et al. Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology 418, 41–50 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Richter, C. A. et al. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides). Gen. Comp. Endocrinol. 203, 215–224 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnes, D. M., Hanlon, P. R. & Kircher, E. A. Effects of inorganic HgCl2 on adipogenesis. Toxicol. Sci. 75(2), 368–377 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Corder, K. R., DeMoranville, K. J., Russell, D. E., Huss, J. M. & Schaeffer, P. J. Annual life-stage regulation of lipid metabolism and storage and association with PPARs in a migrant species: the gray catbird (Dumetella carolinensis). J. Exp. Biol. 219, 3391–3398 (2016).

    PubMed 

    Google Scholar 

  • DeMoranville, K. J., Carter, W. A., Pierce, B. J. & McWilliams, S. R. Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 319(6), R637–R652 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gavrilova, O. et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278(36), 34268–34276 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bedoucha, M., Atzpodien, E. & Boelsterli, U. A. Diabetic KKAy mice exhibit increased hepatic PPARγ1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones. J. Hepatol. 35, 17–23 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Egeler, O., Williams, T. D. & Guglielmo, C. G. Modulation of lipogenic enzymes, fatty acid synthase and Δ 9-desaturase, in relation to migration in the western sandpiper (Calidris mauri). J. Comp. Physiol. B 170, 169–174 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klaper, R. et al. Use of a 15k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow (Pimephales promelas). J. Fish Biol. 72, 2207–2280 (2008).

    CAS 
    Article 

    Google Scholar 

  • Calow, P. Physiological costs of combating chemical toxicants: Ecological implications. Comp. Biochem. Physiol. C 100, 3–6 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Spalding, M. G. et al. Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. J. Wildl. Dis. 36, 423–435 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carlson, J. R., Cristol, D. & Swaddle, J. P. Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings (Sturnus vulgaris). Ecotoxicology 23, 1464–1473 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Faaborg, J. et al. Conserving migratory land birds in the New World: Do we know enough?. Ecol. Appl. 20, 398–418 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Duijns, S. et al. Body condition explains migratory performance of a long-distance migrant. Proc. R. Soc. B https://doi.org/10.1098/rspb.2017.1374 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Getting the carbon out of India’s heavy industries

    Charting the landscape at MIT