Partensky F, Garczarek L. Prochlorococcus: advantages and limits of minimalism. Ann Rev Mar Sci. 2010;2:305–31.
Google Scholar
Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci. 2013;110:9824–9.
Google Scholar
Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. Emergent biogeography of microbial communities in a model ocean. Science. 2007;315:1843–6.
Google Scholar
Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2014;13:13–27.
Google Scholar
Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci. 2016;113:E3365–74.
Google Scholar
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.
Google Scholar
Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA. The integral role of iron in ocean biogeochemistry. Nature. 2017;543:51–9.
Google Scholar
Gledhill M, van den Berg CMG. Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem. 1994;47:41–54.
Google Scholar
Rue EL, Bruland KW. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol Oceanogr 1997;42:901–10.
Hassler CS, van den Berg CMG, Boyd PW. Toward a regional classification to provide a more inclusive examination of the ocean biogeochemistry of iron-binding ligands. Front Mar Sci. 2017;4:1–19.
Gledhill M, Buck KN. The organic complexation of iron in the marine environment: a review. Front Microbiol. 2012;3:1–17.
Bundy RM, Boiteau RM, McLean C, Turk-Kubo KA, McIlvin MR, Saito MA, et al. Distinct siderophores contribute to Iron cycling in the mesopelagic at station ALOHA. Front. 2018;5:1–15.
Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc Natl Acad Sci. 2016;113:14237–42.
Shaked Y, Lis H. Disassembling iron availability to phytoplankton. Front Microbiol. 2012;3:123.
Google Scholar
Morrissey J, Bowler C. Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol. 2012;3:43.
Google Scholar
Hogle SL, Cameron Thrash J, Dupont CL, Barbeau KA. Trace metal acquisition by marine heterotrophic bacterioplankton with contrasting trophic strategies. Appl Environ Microbiol. 2016;82:1613–24.
Google Scholar
Hopkinson B, Barbeau K. Iron transporters in marine prokaryotic genomes and metagenomes. Environ Microbiol. 2012;14:114–28.
Google Scholar
Webb EA, Moffett JW, Waterbury JB. Iron stress in open-ocean Cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.): Identification of the IdiA protein. Appl Environ Microbiol. 2001;67:5444–52.
Google Scholar
Hopkinson BM, Morel FMM. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals. 2009;22:659–69.
Google Scholar
Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE, Thompson A, et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 2013;7:184–98.
Google Scholar
Ustick LJ, Larkin AA, Garcia CA, Garcia NS, Brock ML, Lee JA, et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science. 2021;372:287–91.
Google Scholar
Garcia CA, Hagstrom GI, Larkin AA, Ustick LJ, Levin SA, Lomas MW, et al. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos Trans R Soc Lond B Biol Sci. 2020;375:20190254.
Google Scholar
Hogle SL, Dupont CL, Hopkinson BM, King AL, Buck KN, Roe KL, et al. Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proc Natl Acad Sci. 2018;115:13300–5.
Google Scholar
Hawco NJ, Fu F, Yang N, Hutchins DA, John SG. Independent iron and light limitation in a low-light-adapted Prochlorococcus from the deep chlorophyll maximum. ISME J. 2020;15:359–62.
Google Scholar
Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:180176.
Google Scholar
Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:150023.
Google Scholar
Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:180154.
Google Scholar
Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data. 2014;1:140034.
Google Scholar
Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, et al. A holistic approach to marine eco-systems biology. PLoS Biol. 2011;9:e1001177.
Google Scholar
Schlitzer R, Anderson RF, Dodas EM, Lohan M, Geibert W, Tagliabue A, et al. The GEOTRACES intermediate data product 2017. Chem Geol. 2018;493:210–23.
Google Scholar
Salt LA, van Heuven SMAC, Claus ME, Jones EM, de Baar HJW. Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean. Biogeosciences. 2015;12:1387–401.
Rijkenberg MJA, Middag R, Laan P, Gerringa LJA, van Aken HM, Schoemann V, et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS One. 2014;9:e101323.
Google Scholar
Wyatt NJ, Milne A, Woodward EMS, Rees AP, Browning TJ, Bouman HA, et al. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S: Dissolved zinc in the Atlantic at 40o S. Glob Biogeochem Cycles. 2014;28:44–56.
Google Scholar
Ashkezari MD, Hagen NR, Denholtz M, Neang A, Burns TC, Morales RL, et al. Simons collaborative marine atlas project (Simons CMAP): an open‐source portal to share, visualize, and analyze ocean data. Limnol Oceanogr Methods. 2021;19:488–96.
Acker M, Hogle SL, Berube PM, Hackl T, Stepanauskas R, Chisholm SW, et al. Phosphonate production by marine microbes: exploring new sources and potential function. Proc Natl Acad Sci. 2022;119:e2113386119.
Becker JW, Hogle SL, Rosendo K, Chisholm SW. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 2019;13:1506–19.
Google Scholar
Malmstrom RR, Coe A, Kettler GC, Martiny AC, Frias-Lopez J, Zinser ER, et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J. 2010;4:1252–64.
Google Scholar
Fitzsimmons JN, Hayes CT, Al-Subiai SN, Zhang R, Morton PL, Weisend RE, et al. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA. Geochim Cosmochim Acta. 2015;171:303–24.
Google Scholar
Buck KN, Sohst B, Sedwick PN. The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section. Deep Sea Res Part 2. 2015;116:152–65.
Google Scholar
Mawji E, Gledhill M, Milton JA, Tarran GA, Ussher S, Thompson A, et al. Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ Sci Technol. 2008;42:8675–80.
Google Scholar
Buck KN, Bruland KW. The physicochemical speciation of dissolved iron in the Bering Sea, Alaska. Limnol Oceanogr. 2007;52:1800–8.
Google Scholar
Boiteau RM, Fitzsimmons JN, Repeta DJ, Boyle EA. Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. Anal Chem. 2013;85:4357–62.
Google Scholar
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.
Google Scholar
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.
Google Scholar
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–W87.
Google Scholar
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.
Google Scholar
Wright M, Ziegler A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw, Artic. 2017;77:1–17.
Jolliffe IT. Principal Component Analysis. 1986. Springer-Verlag.
Kursa M, Rudnicki W. Feature selection with the Boruta package. J Stat Softw, Artic. 2010;36:1–13.
Milligan AJ, Harrison PJ. Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol. 2000;36:78–86.
Google Scholar
Lomas MW, Lipschultz F. Forming the primary nitrite maximum: Nitrifiers or phytoplankton? Limnol Oceanogr. 2006;51:2453–67.
Google Scholar
Ahlgren NA, Belisle BS, Lee MD. Genomic mosaicism underlies the adaptation of marine Synechococcus ecotypes to distinct oceanic iron niches. Environ Microbiol. 2019;22:1801–15.
Google Scholar
Martiny AC, Coleman ML, Chisholm SW. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci. 2006;103:12552–7.
Google Scholar
Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci. 2010;107:18634–9.
Google Scholar
Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. eLife. 2019;8:e41043.
Google Scholar
Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H, Schacht U, et al. Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Global Biogeochem Cycles. 2011;25:GB4001.
Manck LE, Park J, Tully BJ, Poire AM, Bundy RM, Dupont CL, et al. Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean. ISME J. 2021;16:358–69.
Mackey KRM, Post AF, McIlvin MR, Saito MA. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ Microbiol. 2017;19:2348–65.
Google Scholar
Raven JA. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. N. Phytol. 1990;116:1–18.
Google Scholar
Sunda WG, Huntsman SA. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature. 1997;390:389–92.
Google Scholar
Hawco NJ, Barone B, Church MJ, Babcock-Adams L, Repeta DJ, Wear EK, et al. Iron depletion in the deep chlorophyll maximum: Mesoscale eddies as natural iron fertilization experiments. Global Biogeochem Cycles. 2021;35:e2021GB007112.
Barbeau K, Rue EL, Bruland KW, Butler A. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature. 2001;413:409–13.
Google Scholar
van den Engh GJ, Doggett JK, Thompson AW, Doblin MA, Gimpel CNG, Karl DM. Dynamics of Prochlorococcus and Synechococcus at Station ALOHA revealed through flow cytometry and high-resolution vertical sampling. Front Mar Sci. 2017;4:1–14.
Karl DM, Church MJ. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat Rev Microbiol. 2014;12:699–713.
Google Scholar
Neuer S, Davenport R, Freudenthal T, Wefer G, Llinás O, Rueda M-J, et al. Differences in the biological carbon pump at three subtropical ocean sites. Geophys Res Lett 2002;29:32–1.
Giovannoni SJ, Vergin KL. Seasonality in ocean microbial communities. Science. 2012;335:671–6.
Google Scholar
Jickells T, Moore CM. The importance of atmospheric deposition for ocean productivity. Annu Rev Ecol Evol Syst. 2015;46:481–501.
Rii YM, Karl DM, Church MJ. Temporal and vertical variability in picophytoplankton primary productivity in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser. 2016;562:1–18.
Google Scholar
Boyle EA, Bergquist BA, Kayser RA, Mahowald N. Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: Temporal variability and an intermediate water hydrothermal plume. Geochim Cosmochim Acta. 2005;69:933–52.
Google Scholar
Caprara S, Buck KN, Gerringa LJA, Rijkenberg MJA, Monticelli D. A compilation of iron speciation data for open oceanic waters. Front Mar Sci. 2016;3:1–7.
Gledhill M, Gerringa LJA. The effect of metal concentration on the parameters derived from complexometric titrations of trace elements in seawater: A model study. Front Mar Sci. 2017;4:1–15.
Jickells TD, Baker AR, Chance R. Atmospheric transport of trace elements and nutrients to the oceans. Philos Trans R Soc Lond A. 2016;374:20150286.
Sedwick PN, Church TM, Bowie AR, Marsay CM, Ussher SJ, Achilles KM, et al. Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer: Eolian imprint, spatiotemporal variability, and ecological implications. Glob Biogeochem Cycles. 2005;19:GB4006.
Ohnemus DC, Rauschenberg S, Cutter GA, Fitzsimmons JN, Sherrell RM, Twining BS. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones. Limnol Oceanogr. 2016;62:3–25.
Browning TJ, Achterberg EP, Rapp I, Engel A, Bertrand EM, Tagliabue A, et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature. 2017;551:242–6.
Louropoulou E, Gledhill M, Achterberg EP, Browning TJ, Honey DJ, Schmitz RA, et al. Heme b distributions through the Atlantic Ocean: evidence for ‘anemic’ phytoplankton populations. Sci Rep. 2020;10:4551.
Google Scholar
Mark Moore C. Diagnosing oceanic nutrient deficiency. Philos Trans R Soc Lond A. 2016;374:20150290.
Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.
Google Scholar
Moore JK, Doney SC, Lindsay K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cycles 2004;18.
Rafter PA, Sigman DM, Mackey KRM. Recycled iron fuels new production in the eastern equatorial Pacific Ocean. Nat Commun. 2017;8:1100.
Google Scholar
Boyd PW, Ellwood MJ, Tagliabue A, Twining BS. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat Geosci. 2017;10:167–73.
Google Scholar
Ferreira D, Cessi P, Coxall HK, de Boer A, Dijkstra HA, Drijfhout SS, et al. Atlantic-Pacific asymmetry in deep water formation. Annu Rev Earth Planet Sci. 2018;46:327–52.
Google Scholar
Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci. 2010;107:16184–9.
Google Scholar
Dutkiewicz S, Ward BA, Monteiro F, Follows MJ. Interconnection of nitrogen fixers and iron in the Pacific Ocean: Theory and numerical simulations. Glob Biogeochem Cycles. 2012;26:GB1012.
Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW, Sohst BM, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature. 2015;523:200–3.
Google Scholar
Sela I, Wolf YI, Koonin EV. Theory of prokaryotic genome evolution. Proc Natl Acad Sci. 2016;113:11399–407.
Google Scholar
Zakem EJ, Al-Haj A, Church MJ, van Dijken GL, Dutkiewicz S, Foster SQ, et al. Ecological control of nitrite in the upper ocean. Nat Commun. 2018;9:1206.
Google Scholar
Lauderdale JM, Braakman R, Forget G, Dutkiewicz S, Follows MJ. Microbial feedbacks optimize ocean iron availability. Proc Natl Acad Sci. 2020;117:4842–9.
Google Scholar
Hogle SL, Barbeau KA, Gledhill M. Heme in the marine environment: from cells to the iron cycle. Metallomics. 2014;6:1107–20.
Google Scholar
Hogle SL, Brahamsha B, Barbeau KA. Direct heme uptake by phytoplankton-associated Roseobacter bacteria. mSystems. 2017;2:e00124–16.
Google Scholar
Coale KH, Fitzwater SE, Michael Gordon R, Johnson KS, Barber RT. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature. 1996;379:621–4.
Google Scholar
Bressac M, Guieu C, Ellwood MJ, Tagliabue A, Wagener T, Laurenceau EC, et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat Geosci. 2019;12:995–1000.
Google Scholar
Basu S, Gledhill M, de Beer D, Prabhu Matondkar SG, Shaked Y. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun Biol. 2019;2:284.
Google Scholar
Source: Ecology - nature.com