in

Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake

  • Zhao, S. et al. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acosta-Motos, J. R. et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy-Basel 7, 18 (2017).

    Google Scholar 

  • Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, H. H. Plant salt tolerance and Na+ sensing and transport. Crop J. 6, 215–225 (2018).

    Google Scholar 

  • Ali, M. et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol. Biochem. 158, 208–218 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Javaid, T., Farooq, M. A., Akhtar, J., Saqib, Z. A. & Anwar-ul-Haq, M. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl- and mineral ions. Plant Physiol. Biochem. 141, 291–299 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zelm, E. V., Zhang, Y. X. & Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403–433 (2020).

    PubMed 

    Google Scholar 

  • Kumar, P. et al. Potassium: A key modulator for cell homeostasis. J. Biotechnol. 324, 198–210 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N. & Ashraf, M. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38, 1–13 (2018).

    Google Scholar 

  • Chiappero, J. et al. Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Ind. Crops Prod. 167, 113541 (2021).

    CAS 

    Google Scholar 

  • Conceicao, S. S. et al. Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Arch. Agron. Soil Sci. 65, 1237–1247 (2019).

    CAS 

    Google Scholar 

  • Etesami, H. & Jeong, B. R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 147, 881–896 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 641–664 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U S A 91, 11–17 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jadhao, K. R., Bansal, A. & Rout, G. R. Silicon amendment induces synergistic plant defense mechanism against pink stem borer (Sesamia inferens Walker.) in finger millet (Eleusine coracana Gaertn.). Sci. Rep. 10, 15 (2020).

    Google Scholar 

  • Li, Z. C. et al. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron. Sustain. Dev. 38, 19 (2018).

    CAS 

    Google Scholar 

  • Yan, G. C. et al. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front. Plant Sci. 11, 12 (2020).

    Google Scholar 

  • Farouk, S., Elhindi, K. M. & Alotaibi, M. A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 206, 11 (2020).

    Google Scholar 

  • Yin, J. L. et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol. Environ. Saf. 169, 8–17 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hurtado, A. C. et al. Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicol. Environ. Saf. 203, 11 (2020).

    Google Scholar 

  • Gaur, S. et al. Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicol. Environ. Saf. 202, 12 (2020).

    Google Scholar 

  • Vandegeer, R. K. et al. Silicon deposition on guard cells increases stomatal sensitivity as mediated by K(+)efflux and consequently reduces stomatal conductance. Physiol. Plant 171, 358–370 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Lina, et al. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.. Plant Cell Environ. 39, 245–258 (2016).

    Google Scholar 

  • Hassanvand, F., Nejad, A. R. & Fanourakis, D. Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Ind. Crops Prod. 134, 19–25 (2019).

    CAS 

    Google Scholar 

  • Altuntas, O., Dasgan, H. Y. & Akhoundnejad, Y. Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper (Capsicum annuum L.). HortScience 53, 1820–1826 (2018).

    CAS 

    Google Scholar 

  • Coskun, D. et al. The controversies of silicon’s role in plant biology. New Phytol. 221, 67–85 (2019).

    PubMed 

    Google Scholar 

  • Jiang, M. Y. et al. An “essential herbal medicine”-licorice: A review of phytochemicals and its effects in combination preparations. J. Ethnopharmacol. 249, 14 (2020).

    Google Scholar 

  • Zhang, X. Y. et al. Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition. J. Pharmacol. Sci. 137, 324–332 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Baltina, L. A. et al. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg. Med. Chem. 41, 116204 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Z. Y. et al. Glycyrrhizic ccid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, J. H., Lv, X., Wu, L. & Li, X. Y. Germination responses of three medicinal licorices to saline environments and their suitable ecological regions. Acta Pratacul. Sin. 22, 198–205 (2013).

    Google Scholar 

  • Geng, G. Q. & Xie, X. R. Effect of drought and salt stress on the physiological and biochemical characteristics of Glycyrrhiza uralensis. Pratacult. Sci. 35, 113–120 (2018).

    Google Scholar 

  • Cui, J. J., Zhang, X. H., Li, Y. T., Zhou, D. & Zhang, E. H. Effect of silicon addition on seedling morphological and physiological indicators of Glycyrrhiza uralensis under salt stress. Acta Pratacul. Sin. 24, 214–220 (2015).

    Google Scholar 

  • Zhang, W. J. et al. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biol. Plant. 64, 302–313 (2020).

    CAS 

    Google Scholar 

  • Zhang, W. J. et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 107, 1–11 (2018).

    Google Scholar 

  • Chen, D. Q. et al. Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci. Rep. 6, 14 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, J. J., Zhang, E. H., Zhang, X. H. & Wang, Q. Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism. Sci. Rep. 11, 12 (2021).

    Google Scholar 

  • Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11, 591–592 (1983).

    CAS 

    Google Scholar 

  • Yan, K., Wu, C. W., Zhang, L. H. & Chen, X. B. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front. Plant Sci. 6, 9 (2015).

    Google Scholar 

  • Li, H. S. Principles and Techniques of Plant Physiological and Biochemical Experiments (Higher Education Press, 2000).

    Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).

    CAS 

    Google Scholar 

  • Havir, E. A. & Mchale, N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84, 450–455 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rizwan, M. et al. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 22, 15416–15431 (2015).

    CAS 

    Google Scholar 

  • Al-Huqail, A. A., Alqarawi, A. A., Hashem, A., Malik, J. A. & Abd Allah, E. F. Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi J. Biol. Sci. 26, 1856–1864 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hurtado, A. C. et al. Silicon application induces changes C:N: P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi J. Biol. Sci. 27, 3711–3719 (2020).

    Google Scholar 

  • Zhang, X. H., Zhang, W. J., Lang, D. Y., Cui, J. J. & Li, Y. T. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environ. Sci. Pollut. Res. 25, 25916–25932 (2018).

    CAS 

    Google Scholar 

  • Liang, W. J., Ma, X. L., Wan, P. & Liu, L. Y. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Tester, M. & Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503–527 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, W. U. D. et al. Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica 56, 1047–1057 (2018).

    CAS 

    Google Scholar 

  • Zahoor, R. et al. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ. Exp. Bot. 137, 73–83 (2017).

    CAS 

    Google Scholar 

  • Hurtado, A. C. et al. Silicon alleviates sodium toxicity in sorghum and sunflower plants by enhancing ionic homeostasis in roots and shoots and increasing dry matter accumulation. SILICON 13, 475–486 (2021).

    CAS 

    Google Scholar 

  • Yan, G. C. et al. Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). J. Plant Physiol. 258, 7 (2021).

    Google Scholar 

  • Dhiman, P. et al. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol. Biochem. 162, 110–123 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Bosnic, P., Bosnic, D., Jasnic, J. & Nikolic, M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ. Exp. Bot. 155, 681–687 (2018).

    CAS 

    Google Scholar 

  • Alamri, S. et al. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol. Biochem. 157, 47–59 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ahmad, P. et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7, 1–11 (2016).

    Google Scholar 

  • Zhu, Y. X. et al. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol. Biochem. 156, 209–220 (2020).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis

    A better way to separate gases