Zhao, S. et al. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609 (2021).
Google Scholar
Acosta-Motos, J. R. et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy-Basel 7, 18 (2017).
Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).
Google Scholar
Wu, H. H. Plant salt tolerance and Na+ sensing and transport. Crop J. 6, 215–225 (2018).
Ali, M. et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol. Biochem. 158, 208–218 (2021).
Google Scholar
Javaid, T., Farooq, M. A., Akhtar, J., Saqib, Z. A. & Anwar-ul-Haq, M. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl- and mineral ions. Plant Physiol. Biochem. 141, 291–299 (2019).
Google Scholar
Zelm, E. V., Zhang, Y. X. & Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403–433 (2020).
Google Scholar
Kumar, P. et al. Potassium: A key modulator for cell homeostasis. J. Biotechnol. 324, 198–210 (2020).
Google Scholar
Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N. & Ashraf, M. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38, 1–13 (2018).
Chiappero, J. et al. Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Ind. Crops Prod. 167, 113541 (2021).
Google Scholar
Conceicao, S. S. et al. Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Arch. Agron. Soil Sci. 65, 1237–1247 (2019).
Google Scholar
Etesami, H. & Jeong, B. R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 147, 881–896 (2018).
Google Scholar
Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 641–664 (1999).
Google Scholar
Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U S A 91, 11–17 (1994).
Google Scholar
Jadhao, K. R., Bansal, A. & Rout, G. R. Silicon amendment induces synergistic plant defense mechanism against pink stem borer (Sesamia inferens Walker.) in finger millet (Eleusine coracana Gaertn.). Sci. Rep. 10, 15 (2020).
Li, Z. C. et al. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron. Sustain. Dev. 38, 19 (2018).
Google Scholar
Yan, G. C. et al. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front. Plant Sci. 11, 12 (2020).
Farouk, S., Elhindi, K. M. & Alotaibi, M. A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 206, 11 (2020).
Yin, J. L. et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol. Environ. Saf. 169, 8–17 (2019).
Google Scholar
Hurtado, A. C. et al. Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicol. Environ. Saf. 203, 11 (2020).
Gaur, S. et al. Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicol. Environ. Saf. 202, 12 (2020).
Vandegeer, R. K. et al. Silicon deposition on guard cells increases stomatal sensitivity as mediated by K(+)efflux and consequently reduces stomatal conductance. Physiol. Plant 171, 358–370 (2021).
Google Scholar
Lina, et al. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.. Plant Cell Environ. 39, 245–258 (2016).
Hassanvand, F., Nejad, A. R. & Fanourakis, D. Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Ind. Crops Prod. 134, 19–25 (2019).
Google Scholar
Altuntas, O., Dasgan, H. Y. & Akhoundnejad, Y. Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper (Capsicum annuum L.). HortScience 53, 1820–1826 (2018).
Google Scholar
Coskun, D. et al. The controversies of silicon’s role in plant biology. New Phytol. 221, 67–85 (2019).
Google Scholar
Jiang, M. Y. et al. An “essential herbal medicine”-licorice: A review of phytochemicals and its effects in combination preparations. J. Ethnopharmacol. 249, 14 (2020).
Zhang, X. Y. et al. Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition. J. Pharmacol. Sci. 137, 324–332 (2018).
Google Scholar
Baltina, L. A. et al. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg. Med. Chem. 41, 116204 (2021).
Google Scholar
Zhao, Z. Y. et al. Glycyrrhizic ccid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).
Google Scholar
Lu, J. H., Lv, X., Wu, L. & Li, X. Y. Germination responses of three medicinal licorices to saline environments and their suitable ecological regions. Acta Pratacul. Sin. 22, 198–205 (2013).
Geng, G. Q. & Xie, X. R. Effect of drought and salt stress on the physiological and biochemical characteristics of Glycyrrhiza uralensis. Pratacult. Sci. 35, 113–120 (2018).
Cui, J. J., Zhang, X. H., Li, Y. T., Zhou, D. & Zhang, E. H. Effect of silicon addition on seedling morphological and physiological indicators of Glycyrrhiza uralensis under salt stress. Acta Pratacul. Sin. 24, 214–220 (2015).
Zhang, W. J. et al. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biol. Plant. 64, 302–313 (2020).
Google Scholar
Zhang, W. J. et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 107, 1–11 (2018).
Chen, D. Q. et al. Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci. Rep. 6, 14 (2016).
Google Scholar
Cui, J. J., Zhang, E. H., Zhang, X. H. & Wang, Q. Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism. Sci. Rep. 11, 12 (2021).
Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11, 591–592 (1983).
Google Scholar
Yan, K., Wu, C. W., Zhang, L. H. & Chen, X. B. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front. Plant Sci. 6, 9 (2015).
Li, H. S. Principles and Techniques of Plant Physiological and Biochemical Experiments (Higher Education Press, 2000).
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).
Google Scholar
Havir, E. A. & Mchale, N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84, 450–455 (1987).
Google Scholar
Rizwan, M. et al. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 22, 15416–15431 (2015).
Google Scholar
Al-Huqail, A. A., Alqarawi, A. A., Hashem, A., Malik, J. A. & Abd Allah, E. F. Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi J. Biol. Sci. 26, 1856–1864 (2019).
Google Scholar
Hurtado, A. C. et al. Silicon application induces changes C:N: P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi J. Biol. Sci. 27, 3711–3719 (2020).
Zhang, X. H., Zhang, W. J., Lang, D. Y., Cui, J. J. & Li, Y. T. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environ. Sci. Pollut. Res. 25, 25916–25932 (2018).
Google Scholar
Liang, W. J., Ma, X. L., Wan, P. & Liu, L. Y. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).
Google Scholar
Tester, M. & Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503–527 (2003).
Google Scholar
Khan, W. U. D. et al. Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica 56, 1047–1057 (2018).
Google Scholar
Zahoor, R. et al. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ. Exp. Bot. 137, 73–83 (2017).
Google Scholar
Hurtado, A. C. et al. Silicon alleviates sodium toxicity in sorghum and sunflower plants by enhancing ionic homeostasis in roots and shoots and increasing dry matter accumulation. SILICON 13, 475–486 (2021).
Google Scholar
Yan, G. C. et al. Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). J. Plant Physiol. 258, 7 (2021).
Dhiman, P. et al. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol. Biochem. 162, 110–123 (2021).
Google Scholar
Bosnic, P., Bosnic, D., Jasnic, J. & Nikolic, M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ. Exp. Bot. 155, 681–687 (2018).
Google Scholar
Alamri, S. et al. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol. Biochem. 157, 47–59 (2020).
Google Scholar
Ahmad, P. et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7, 1–11 (2016).
Zhu, Y. X. et al. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol. Biochem. 156, 209–220 (2020).
Google Scholar
Source: Ecology - nature.com