in

Single-cell view of deep-sea microbial activity and intracommunity heterogeneity

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361–422.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arístegui J, Gasol JM, Duarte CM, Herndl GJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr. 2009;54:1501–29.

    Article 

    Google Scholar 

  • Ebrahimi A, Schwartzman J, Cordero OX. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc Natl Acad Sci USA. 2019;116:23309–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol. 2015;6:469.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002;28:175–211.

    Article 

    Google Scholar 

  • Alldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Progr Oceanogr. 1988;20:41–82.

    Article 

    Google Scholar 

  • Zehr JP, Kudela RM. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci. 2011;3:197–225.

    PubMed 
    Article 

    Google Scholar 

  • Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol. 2021;4:604.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Teira E, Lebaron P, van Aken H, Herndl GJ. Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr. 2006;51:2131–44.

    CAS 
    Article 

    Google Scholar 

  • Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol. 2005;71:2303–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gasol JM, Alonso-Sáez L, Vaqué D, Baltar F, Calleja ML, Duarte CM, et al. Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Progr Oceanogr. 2009;83:189–96.

    Article 

    Google Scholar 

  • Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, et al. Characterizing chemoautotrophy and heterotrophy in marine archaea and bacteria with single-cell multi-isotope NanoSIP. Front Microbiol. 2019;10:2682.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Orphan VJ, House CH. Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiology. 2009;7:360–72.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol Biol. 2012;881:375–408.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nuñez J, Renslow R, Cliff JB, Anderton CR. NanoSIMS for biological applications: current practices and analyses. Biointerphases. 2018;13:03B301.

    Article 

    Google Scholar 

  • Dawson KS, Scheller S, Dillon JG, Orphan VJ. Stable isotope phenotyping via cluster analysis of NanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front Microbiol. 2016;7:774.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arandia-Gorostidi N, Weber PK, Alonso-Sáez L, Morán XAG, Mayali X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 2017;11:641–50.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol. 2015;17:2542–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinic I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:1–23.

    Article 

    Google Scholar 

  • Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, et al. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol. 2021;23:6764–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gini C. Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. C. Cuppini, Bologna; 1912.

  • Fernández-Tschieder E, Binkley D. Linking competition with growth dominance and production ecology. Ecol Manag. 2018;414:99–107.

    Article 

    Google Scholar 

  • Cordonnier T, Kunstler G. The Gini index brings asymmetric competition to light. Perspect Plant Ecol Evol Syst. 2015;17:107–15.

    Article 

    Google Scholar 

  • Harch BD, Correll RL, Meech W, Kirkby CA, Pankhurst CE. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J Microbiol Methods. 1997;30:91–101.

    CAS 
    Article 

    Google Scholar 

  • Li J, Ma YB, Hu HW, Wang JT, Liu YR, He JZ. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Front Microbiol. 2015;6:31.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-nanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arandia‐Gorostidi N, Alonso‐Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N. Warming the phycosphere: Differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ Microbiol. 2020;22:1381–96.

    PubMed 
    Article 

    Google Scholar 

  • Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2021;23:81–98.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kemp PF, Lee S, Laroche J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol. 1993;59:2594–601.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baltar F, Arístegui J, Gasol J, Sintes E, van Aken H, Herndl G. High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat Micro Ecol. 2010;58:287–302.

    Article 

    Google Scholar 

  • Lønborg C, Nieto-Cid M, Hernando-Morales V, Hernández-Ruiz M, Teira E, Álvarez-Salgado XA. Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial carbon cycling and diversity. FEMS Microbiol Ecol. 2016;92:fiw048.

    PubMed 
    Article 

    Google Scholar 

  • Nagata T, Fukuda H, Fukuda R, Koike I. Bacter-ioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol Oceanogr. 2000;45:426–35.

    CAS 
    Article 

    Google Scholar 

  • Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl Environ Microbiol. 2004;70:4411–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mestre M, Hofer J. The microbial conveyor belt: connecting the globe through dispersion and dormancy. Trends Microbiol. 2020;29:482–92.

    PubMed 
    Article 

    Google Scholar 

  • Giering SLC, Evans C. Overestimation of prokaryotic production by leucine incorporation—and how to avoid it. Limnol Oceanogr. 2022;67:726–38.

    Article 

    Google Scholar 

  • Amos CM, Castelao RM, Medeiros PM. Offshore transport of particulate organic carbon in the California Current System by mesoscale eddies. Nat Commun. 2019;10:4940.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bauer JE, Druffel ERM. Ocean margins as a significant source of organic matter to the deep open ocean. Nature. 1998;392:482–5.

    CAS 
    Article 

    Google Scholar 

  • Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean—a review. Environ Microbiol. 2013;15:1262–74.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM. Dilution limits dissolved organic carbon utilization in the deep ocean. Science. 2015;348:331–3.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alonso C, Musat N, Adam B, Kuypers M, Amann R. HISH-SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. Syst Appl Microbiol. 2012;35:541–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klawonn I, Bonaglia S, Whitehouse MJ, Littmann S, Tienken D, Kuypers MMM, et al. Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME J. 2019;13:1960–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:150720190448005.

    Article 

    Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Licht TR, Tolker-Nielsen T, Holmstrøm K, Krogfelt KA, Molin S. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents. Environ Microbiol. 1999;1:23–32.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu J, Gao W, Johnson R, Zhang W, Meldrum D. Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of North Pacific Ocean. Mar Drugs. 2013;11:3777–801.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The evolution of parental care in salamanders

    Simulating neutron behavior in nuclear reactors