in

Smartphone app reveals that lynx avoid human recreationists on local scale, but not home range scale

  • United Nations. (Department of Economic and Social Affairs, Population Division, 2019).

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469. https://doi.org/10.1126/science.aam9712 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 92, 216–233. https://doi.org/10.1111/brv.12224 (2017).

    Article 
    PubMed 

    Google Scholar 

  • IUCN. IUCN Programme 2017–2020. (2016).

  • IUCN. The IUCN Red List of Threatened Species. Version 2021–3. (2021).

  • Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 6. https://doi.org/10.1371/journal.pbio.1002074 (2015).

    CAS 
    Article 

    Google Scholar 

  • Balmford, A. et al. A global perspective on trends in nature-based tourism. PLoS Biol. 7, 6. https://doi.org/10.1371/journal.pbio.1000144 (2009).

    CAS 
    Article 

    Google Scholar 

  • Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. U. S. A. 109, 16083–16088. https://doi.org/10.1073/pnas.1211658109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, G. Z. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 12. https://doi.org/10.1038/s41467-020-14386-x (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Larson, C. L., Reed, S. E., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systematic review. PLoS ONE 11, 21. https://doi.org/10.1371/journal.pone.0167259 (2016).

    CAS 
    Article 

    Google Scholar 

  • Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 16 (2002).

    Google Scholar 

  • Moen, G. K., Stoen, O. G., Sahlen, V. & Swenson, J. E. Behaviour of solitary adult scandinavian brown bears (Ursus arctos) when approached by humans on foot. PLoS ONE 7, 7. https://doi.org/10.1371/journal.pone.0031699 (2012).

    CAS 
    Article 

    Google Scholar 

  • Le Grand, L. et al. Behavioral and physiological responses of scandinavian brown bears (ursus arctos) to dog hunts and human encounters. Front. Ecol. Evol. 7, 9. https://doi.org/10.3389/fevo.2019.00134 (2019).

    Article 

    Google Scholar 

  • Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecol. (Washington D C) 61, 65–71. https://doi.org/10.2307/1937156 (1980).

    Article 

    Google Scholar 

  • Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364. https://doi.org/10.1093/beheco/aru134 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinemeyer, K. et al. Wolverines in winter: indirect habitat loss and functional responses to backcountry recreation. Ecosphere https://doi.org/10.1002/ecs2.2611 (2019).

    Article 

    Google Scholar 

  • Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).

    Article 

    Google Scholar 

  • Coppes, J., Burghardt, F., Hagen, R., Suchant, R. & Braunisch, V. Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus). PLoS ONE 12, 19. https://doi.org/10.1371/journal.pone.0175134 (2017).

    CAS 
    Article 

    Google Scholar 

  • Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Global Ecol. Conserv. 30, e01772 (2021).

    Article 

    Google Scholar 

  • Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519. https://doi.org/10.1126/science.1257553 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ordiz, A., Bischof, R. & Swenson, J. E. Saving large carnivores, but losing the apex predator?. Biol. Conserv. 168, 128–133. https://doi.org/10.1016/j.biocon.2013.09.024 (2013).

    Article 

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306. https://doi.org/10.1126/science.1205106 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ordiz, A. et al. Habituation, sensitization, or consistent behavioral responses? Brown bear responses after repeated approaches by humans on foot. Biol. Conserv. 232, 228–237. https://doi.org/10.1016/j.biocon.2019.01.016 (2019).

    Article 

    Google Scholar 

  • Smith, T. S., Oyster, J., Partridge, S. D., Martin, I. E. & Sisson, A. Assessing American black bear response to human activity at Kenai Fjords National Park, Alaska. Ursus 23, 179–191. https://doi.org/10.2192/ursus-d-11-00020.1 (2012).

    Article 

    Google Scholar 

  • Wam, H. K., Eldegard, K. & Hjeljord, O. Minor habituation to repeated experimental approaches in Scandinavian wolves. Eur. J. Wildl. Res. 60, 839–842. https://doi.org/10.1007/s10344-014-0841-0 (2014).

    Article 

    Google Scholar 

  • Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Puma responses to close approaches by researchers. Wildl. Soc. Bull. 33, 905–913. https://doi.org/10.2193/0091-7648(2005)33[905:Prtcab]2.0.Co;2 (2005).

    Article 

    Google Scholar 

  • Coppes, J., Ehrlacher, J., Thiel, D., Suchant, R. & Braunisch, V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 48, 1583–1594. https://doi.org/10.1111/jav.01239 (2017).

    Article 

    Google Scholar 

  • Coppes, J. et al. Habitat suitability modulates the response of wildlife to human recreation. Biol. Conserv. 227, 56–64. https://doi.org/10.1016/j.biocon.2018.08.018 (2018).

    Article 

    Google Scholar 

  • Gundersen, V., Vistad, O. I., Panzacchi, M., Strand, O. & van Moorter, B. Large-scale segregation of tourists and wild reindeer in three Norwegian national parks: Management implications. Tourism Manage. 75, 22–33. https://doi.org/10.1016/j.tourman.2019.04.017 (2019).

    Article 

    Google Scholar 

  • Filla, M. et al. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night. Ecol. Evol. 7, 6367–6381. https://doi.org/10.1002/ece3.3204 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, O., Gundersen, V., Wold, L. C. & Stange, E. Monitoring visitors to natural areas in wintertime: issues in counter accuracy. J. Sustain. Tour. 22, 550–560. https://doi.org/10.1080/09669582.2013.839693 (2014).

    Article 

    Google Scholar 

  • Marion, S. et al. A systematic review of methods for studying the impacts of outdoor recreation on terrestrial wildlife. Glob. Ecol. Conserv. 22, e00917 (2020).

    Article 

    Google Scholar 

  • Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 8. https://doi.org/10.1016/j.biocon.2020.108818 (2021).

    Article 

    Google Scholar 

  • Jager, H., Schirpke, U. & Tappeiner, U. Assessing conflicts between winter recreational activities and grouse species. J. Environ. Manage. 276, 9. https://doi.org/10.1016/j.jenvman.2020.111194 (2020).

    Article 

    Google Scholar 

  • Linnell, J. D. C., Broseth, H., Odden, J. & Nilsen, E. B. Sustainably harvesting a large Carnivore? Development of Eurasian Lynx populations in Norway during 160 years of shifting policy. Environ. Manage. 45, 1142–1154. https://doi.org/10.1007/s00267-010-9455-9 (2010).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Andren, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32. https://doi.org/10.1016/j.biocon.2006.01.025 (2006).

    Article 

    Google Scholar 

  • Manly, B., McDonald, L., Thomas, D., McDonald, T. & Erickson, W. Resource Selection by Animals (Dordrecht: Kluwer Academic Publishers, 2002).

  • Odden, J., Linnell, J. D. C. & Andersen, R. Diet of Eurasian lynx, Lynx lynx, in the boreal forest of southeastern Norway: the relative importance of livestock and hares at low roe deer density. Eur. J. Wildl. Res. 52, 237–244. https://doi.org/10.1007/s10344-006-0052-4 (2006).

    Article 

    Google Scholar 

  • Gervasi, V., Nilsen, E. B., Odden, J., Bouyer, Y. & Linnell, J. D. C. The spatio-temporal distribution of wild and domestic ungulates modulates lynx kill rates in a multi-use landscape. J. Zool. 292, 175–183. https://doi.org/10.1111/jzo.12088 (2014).

    Article 

    Google Scholar 

  • Arnemo, J. M. & Evans, A. Biomedical protocols for free-ranging brown bears, wolves, wolverines and lynx (Hedmark University College Evenstad, 2017).

    Google Scholar 

  • Padgham, M., Lovelace, R., Salmon, M. & Rudis, B. osmdata. J. Open Source Softw. 2, 305 (2017).

    ADS 
    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).

  • Northrup, J. M., Hooten, M. B., Anderson, C. R. & Wittemyer, G. Practical guidance on characterizing availability in resource selection functions under a use-availability design. Ecology 94, 1456–1463. https://doi.org/10.1890/12-1688.1 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363. https://doi.org/10.1890/06-0957.1 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017 (2006).

    Article 

    Google Scholar 

  • Therneau, T. A Package for Survival Analysis in R. R package version 3.2–7. (2020).

  • Fay, M. P., Graubard, B. I., Freedman, L. S. & Midthune, D. N. Conditional logistic regression with sandwich estimators: Application to a meta-analysis. Biometrics 54, 195–208. https://doi.org/10.2307/2534007 (1998).

    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Prima, M.-C., Duchesne, T. & Fortin, D. Robust inference from conditional logistic regression applied to movement and habitat selection analysis. PLoS ONE 12, e0169779 (2017).

    Article 

    Google Scholar 

  • Basille, M. et al. Selecting habitat to survive: the impact of road density on survival in a large carnivore. PLoS ONE 8, 11. https://doi.org/10.1371/journal.pone.0065493 (2013).

    CAS 
    Article 

    Google Scholar 

  • Basille, M. et al. What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people?. Ecography 32, 683–691. https://doi.org/10.1111/j.1600-0587.2009.05712.x (2009).

    Article 

    Google Scholar 

  • Bouyer, Y. et al. Eurasian lynx habitat selection in human-modified landscape in Norway: effects of different human habitat modifications and behavioral states. Biol. Conserv. 191, 291–299. https://doi.org/10.1016/j.biocon.2015.07.007 (2015).

    Article 

    Google Scholar 

  • Heggem, E. S. F., Mathisen, H. & Frydenlund, J. J. N. R. AR50–Arealressurskart i målestokk 1: 50 000. Et heldekkende arealressurskart for jord-og skogbruk. (2019).

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4–5. (2020).

  • Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 1.1–1. https://CRAN.R-project.org/package=maptools. (2021).

  • Akaike, H. in IEEE Transactions on Automatic Control Vol. 19 716–723 (1974).

  • Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference—a practical information-theoretic approach.2nd edn. Springer, New York (2002).

  • Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Vol. 43 (CRC press, 1990).

  • Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686. https://doi.org/10.1198/016214504000000980 (2004).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Vazquez, C., Rowcliffe, J. M., Spoelstra, K. & Jansen, P. A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 10, 2057–2066. https://doi.org/10.1111/2041-210x.13290 (2019).

    Article 

    Google Scholar 

  • Rowcliffe, M. activity: Animal Activity Statistics. R package version 1.3.1. (2021).

  • Olson, L. E., Squires, J. R., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Sharing the same slope: behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation. Ecol. Evol. 8, 8555–8572. https://doi.org/10.1002/ece3.4382 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Squires, J. R., Olson, L. E., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Winter recreation and Canada lynx: reducing conflict through niche partitioning. Ecosphere 10, 22. https://doi.org/10.1002/ecs2.2876 (2019).

    Article 

    Google Scholar 

  • Belotti, E., Mayer, K., Kreisinger, J., Heurich, M. & Bufka, L. Recreational activities affect resting site selection and foraging time of Eurasian lynx (Lynx lynx). Hystrix 29, 181–189. https://doi.org/10.4404/hystrix-00053-2018 (2018).

    Article 

    Google Scholar 

  • Sunde, P., Stener, S. O. & Kvam, T. Tolerance to humans of resting lynxes Lynx lynx in a hunted population. Wildlife Biol. 4, 177–183 (1998).

    Article 

    Google Scholar 

  • Heurich, M. et al. Activity patterns of Eurasian Lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, 20. https://doi.org/10.1371/journal.pone.0114143 (2014).

    CAS 
    Article 

    Google Scholar 

  • Bischof, R., Gjevestad, J. G. O., Ordiz, A., Eldegard, K. & Milleret, C. High frequency GPS bursts and path-level analysis reveal linear feature tracking by red foxes. Sci. Rep. 9, 13. https://doi.org/10.1038/s41598-019-45150-x (2019).

    CAS 
    Article 

    Google Scholar 

  • Bouyer, Y. et al. Tolerance to anthropogenic disturbance by a large carnivore: the case of Eurasian lynx in south-eastern Norway. Anim. Conserv. 18, 271–278. https://doi.org/10.1111/acv.12168 (2015).

    MathSciNet 
    Article 

    Google Scholar 

  • Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 11. https://doi.org/10.1088/1748-9326/abb396 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sun, Y. R., Du, Y. Y., Wang, Y. & Zhuang, L. Y. Examining associations of environmental characteristics with recreational cycling behaviour by street-level strava data. Int. J. Environ. Res. Public Health 14, 12. https://doi.org/10.3390/ijerph14060644 (2017).

    Article 

    Google Scholar 

  • Griffin, G. P. & Jiao, J. Where does bicycling for health happen? analysing volunteered geographic information through place and plexus. J. Transp. Health 2, 238–247. https://doi.org/10.1016/j.jth.2014.12.001 (2015).

    Article 

    Google Scholar 

  • Conrow, L., Wentz, E., Nelson, T. & Pettit, C. Comparing spatial patterns of crowdsourced and conventional bicycling datasets. Appl. Geogr. 92, 21–30. https://doi.org/10.1016/j.apgeog.2018.01.009 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Finding her way to fusion