United Nations. (Department of Economic and Social Affairs, Population Division, 2019).
Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469. https://doi.org/10.1126/science.aam9712 (2018).
Google Scholar
Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 92, 216–233. https://doi.org/10.1111/brv.12224 (2017).
Google Scholar
IUCN. IUCN Programme 2017–2020. (2016).
IUCN. The IUCN Red List of Threatened Species. Version 2021–3. (2021).
Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 6. https://doi.org/10.1371/journal.pbio.1002074 (2015).
Google Scholar
Balmford, A. et al. A global perspective on trends in nature-based tourism. PLoS Biol. 7, 6. https://doi.org/10.1371/journal.pbio.1000144 (2009).
Google Scholar
Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. U. S. A. 109, 16083–16088. https://doi.org/10.1073/pnas.1211658109 (2012).
Google Scholar
Chen, G. Z. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 12. https://doi.org/10.1038/s41467-020-14386-x (2020).
Google Scholar
Larson, C. L., Reed, S. E., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systematic review. PLoS ONE 11, 21. https://doi.org/10.1371/journal.pone.0167259 (2016).
Google Scholar
Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 16 (2002).
Moen, G. K., Stoen, O. G., Sahlen, V. & Swenson, J. E. Behaviour of solitary adult scandinavian brown bears (Ursus arctos) when approached by humans on foot. PLoS ONE 7, 7. https://doi.org/10.1371/journal.pone.0031699 (2012).
Google Scholar
Le Grand, L. et al. Behavioral and physiological responses of scandinavian brown bears (ursus arctos) to dog hunts and human encounters. Front. Ecol. Evol. 7, 9. https://doi.org/10.3389/fevo.2019.00134 (2019).
Google Scholar
Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecol. (Washington D C) 61, 65–71. https://doi.org/10.2307/1937156 (1980).
Google Scholar
Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364. https://doi.org/10.1093/beheco/aru134 (2014).
Google Scholar
Heinemeyer, K. et al. Wolverines in winter: indirect habitat loss and functional responses to backcountry recreation. Ecosphere https://doi.org/10.1002/ecs2.2611 (2019).
Google Scholar
Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).
Google Scholar
Coppes, J., Burghardt, F., Hagen, R., Suchant, R. & Braunisch, V. Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus). PLoS ONE 12, 19. https://doi.org/10.1371/journal.pone.0175134 (2017).
Google Scholar
Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Global Ecol. Conserv. 30, e01772 (2021).
Google Scholar
Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519. https://doi.org/10.1126/science.1257553 (2014).
Google Scholar
Ordiz, A., Bischof, R. & Swenson, J. E. Saving large carnivores, but losing the apex predator?. Biol. Conserv. 168, 128–133. https://doi.org/10.1016/j.biocon.2013.09.024 (2013).
Google Scholar
Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306. https://doi.org/10.1126/science.1205106 (2011).
Google Scholar
Ordiz, A. et al. Habituation, sensitization, or consistent behavioral responses? Brown bear responses after repeated approaches by humans on foot. Biol. Conserv. 232, 228–237. https://doi.org/10.1016/j.biocon.2019.01.016 (2019).
Google Scholar
Smith, T. S., Oyster, J., Partridge, S. D., Martin, I. E. & Sisson, A. Assessing American black bear response to human activity at Kenai Fjords National Park, Alaska. Ursus 23, 179–191. https://doi.org/10.2192/ursus-d-11-00020.1 (2012).
Google Scholar
Wam, H. K., Eldegard, K. & Hjeljord, O. Minor habituation to repeated experimental approaches in Scandinavian wolves. Eur. J. Wildl. Res. 60, 839–842. https://doi.org/10.1007/s10344-014-0841-0 (2014).
Google Scholar
Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Puma responses to close approaches by researchers. Wildl. Soc. Bull. 33, 905–913. https://doi.org/10.2193/0091-7648(2005)33[905:Prtcab]2.0.Co;2 (2005).
Google Scholar
Coppes, J., Ehrlacher, J., Thiel, D., Suchant, R. & Braunisch, V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 48, 1583–1594. https://doi.org/10.1111/jav.01239 (2017).
Google Scholar
Coppes, J. et al. Habitat suitability modulates the response of wildlife to human recreation. Biol. Conserv. 227, 56–64. https://doi.org/10.1016/j.biocon.2018.08.018 (2018).
Google Scholar
Gundersen, V., Vistad, O. I., Panzacchi, M., Strand, O. & van Moorter, B. Large-scale segregation of tourists and wild reindeer in three Norwegian national parks: Management implications. Tourism Manage. 75, 22–33. https://doi.org/10.1016/j.tourman.2019.04.017 (2019).
Google Scholar
Filla, M. et al. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night. Ecol. Evol. 7, 6367–6381. https://doi.org/10.1002/ece3.3204 (2017).
Google Scholar
Andersen, O., Gundersen, V., Wold, L. C. & Stange, E. Monitoring visitors to natural areas in wintertime: issues in counter accuracy. J. Sustain. Tour. 22, 550–560. https://doi.org/10.1080/09669582.2013.839693 (2014).
Google Scholar
Marion, S. et al. A systematic review of methods for studying the impacts of outdoor recreation on terrestrial wildlife. Glob. Ecol. Conserv. 22, e00917 (2020).
Google Scholar
Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 8. https://doi.org/10.1016/j.biocon.2020.108818 (2021).
Google Scholar
Jager, H., Schirpke, U. & Tappeiner, U. Assessing conflicts between winter recreational activities and grouse species. J. Environ. Manage. 276, 9. https://doi.org/10.1016/j.jenvman.2020.111194 (2020).
Google Scholar
Linnell, J. D. C., Broseth, H., Odden, J. & Nilsen, E. B. Sustainably harvesting a large Carnivore? Development of Eurasian Lynx populations in Norway during 160 years of shifting policy. Environ. Manage. 45, 1142–1154. https://doi.org/10.1007/s00267-010-9455-9 (2010).
Google Scholar
Andren, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32. https://doi.org/10.1016/j.biocon.2006.01.025 (2006).
Google Scholar
Manly, B., McDonald, L., Thomas, D., McDonald, T. & Erickson, W. Resource Selection by Animals (Dordrecht: Kluwer Academic Publishers, 2002).
Odden, J., Linnell, J. D. C. & Andersen, R. Diet of Eurasian lynx, Lynx lynx, in the boreal forest of southeastern Norway: the relative importance of livestock and hares at low roe deer density. Eur. J. Wildl. Res. 52, 237–244. https://doi.org/10.1007/s10344-006-0052-4 (2006).
Google Scholar
Gervasi, V., Nilsen, E. B., Odden, J., Bouyer, Y. & Linnell, J. D. C. The spatio-temporal distribution of wild and domestic ungulates modulates lynx kill rates in a multi-use landscape. J. Zool. 292, 175–183. https://doi.org/10.1111/jzo.12088 (2014).
Google Scholar
Arnemo, J. M. & Evans, A. Biomedical protocols for free-ranging brown bears, wolves, wolverines and lynx (Hedmark University College Evenstad, 2017).
Padgham, M., Lovelace, R., Salmon, M. & Rudis, B. osmdata. J. Open Source Softw. 2, 305 (2017).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).
Northrup, J. M., Hooten, M. B., Anderson, C. R. & Wittemyer, G. Practical guidance on characterizing availability in resource selection functions under a use-availability design. Ecology 94, 1456–1463. https://doi.org/10.1890/12-1688.1 (2013).
Google Scholar
Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363. https://doi.org/10.1890/06-0957.1 (2007).
Google Scholar
Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017 (2006).
Google Scholar
Therneau, T. A Package for Survival Analysis in R. R package version 3.2–7. (2020).
Fay, M. P., Graubard, B. I., Freedman, L. S. & Midthune, D. N. Conditional logistic regression with sandwich estimators: Application to a meta-analysis. Biometrics 54, 195–208. https://doi.org/10.2307/2534007 (1998).
Google Scholar
Prima, M.-C., Duchesne, T. & Fortin, D. Robust inference from conditional logistic regression applied to movement and habitat selection analysis. PLoS ONE 12, e0169779 (2017).
Google Scholar
Basille, M. et al. Selecting habitat to survive: the impact of road density on survival in a large carnivore. PLoS ONE 8, 11. https://doi.org/10.1371/journal.pone.0065493 (2013).
Google Scholar
Basille, M. et al. What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people?. Ecography 32, 683–691. https://doi.org/10.1111/j.1600-0587.2009.05712.x (2009).
Google Scholar
Bouyer, Y. et al. Eurasian lynx habitat selection in human-modified landscape in Norway: effects of different human habitat modifications and behavioral states. Biol. Conserv. 191, 291–299. https://doi.org/10.1016/j.biocon.2015.07.007 (2015).
Google Scholar
Heggem, E. S. F., Mathisen, H. & Frydenlund, J. J. N. R. AR50–Arealressurskart i målestokk 1: 50 000. Et heldekkende arealressurskart for jord-og skogbruk. (2019).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4–5. (2020).
Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 1.1–1. https://CRAN.R-project.org/package=maptools. (2021).
Akaike, H. in IEEE Transactions on Automatic Control Vol. 19 716–723 (1974).
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference—a practical information-theoretic approach.2nd edn. Springer, New York (2002).
Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Vol. 43 (CRC press, 1990).
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686. https://doi.org/10.1198/016214504000000980 (2004).
Google Scholar
Vazquez, C., Rowcliffe, J. M., Spoelstra, K. & Jansen, P. A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 10, 2057–2066. https://doi.org/10.1111/2041-210x.13290 (2019).
Google Scholar
Rowcliffe, M. activity: Animal Activity Statistics. R package version 1.3.1. (2021).
Olson, L. E., Squires, J. R., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Sharing the same slope: behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation. Ecol. Evol. 8, 8555–8572. https://doi.org/10.1002/ece3.4382 (2018).
Google Scholar
Squires, J. R., Olson, L. E., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Winter recreation and Canada lynx: reducing conflict through niche partitioning. Ecosphere 10, 22. https://doi.org/10.1002/ecs2.2876 (2019).
Google Scholar
Belotti, E., Mayer, K., Kreisinger, J., Heurich, M. & Bufka, L. Recreational activities affect resting site selection and foraging time of Eurasian lynx (Lynx lynx). Hystrix 29, 181–189. https://doi.org/10.4404/hystrix-00053-2018 (2018).
Google Scholar
Sunde, P., Stener, S. O. & Kvam, T. Tolerance to humans of resting lynxes Lynx lynx in a hunted population. Wildlife Biol. 4, 177–183 (1998).
Google Scholar
Heurich, M. et al. Activity patterns of Eurasian Lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, 20. https://doi.org/10.1371/journal.pone.0114143 (2014).
Google Scholar
Bischof, R., Gjevestad, J. G. O., Ordiz, A., Eldegard, K. & Milleret, C. High frequency GPS bursts and path-level analysis reveal linear feature tracking by red foxes. Sci. Rep. 9, 13. https://doi.org/10.1038/s41598-019-45150-x (2019).
Google Scholar
Bouyer, Y. et al. Tolerance to anthropogenic disturbance by a large carnivore: the case of Eurasian lynx in south-eastern Norway. Anim. Conserv. 18, 271–278. https://doi.org/10.1111/acv.12168 (2015).
Google Scholar
Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 11. https://doi.org/10.1088/1748-9326/abb396 (2020).
Google Scholar
Sun, Y. R., Du, Y. Y., Wang, Y. & Zhuang, L. Y. Examining associations of environmental characteristics with recreational cycling behaviour by street-level strava data. Int. J. Environ. Res. Public Health 14, 12. https://doi.org/10.3390/ijerph14060644 (2017).
Google Scholar
Griffin, G. P. & Jiao, J. Where does bicycling for health happen? analysing volunteered geographic information through place and plexus. J. Transp. Health 2, 238–247. https://doi.org/10.1016/j.jth.2014.12.001 (2015).
Google Scholar
Conrow, L., Wentz, E., Nelson, T. & Pettit, C. Comparing spatial patterns of crowdsourced and conventional bicycling datasets. Appl. Geogr. 92, 21–30. https://doi.org/10.1016/j.apgeog.2018.01.009 (2018).
Google Scholar
Source: Ecology - nature.com