Kelly, J. F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool. 78(1), 1–27 (2000).
Google Scholar
Barnes, C., Sweeting, C. J., Jennings, S., Barry, J. & TandPolunin, N. V. Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Funct. Ecol. 21(2), 356–362. https://doi.org/10.1111/j.1365-2435.2006.01224.x (2007).
Google Scholar
Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216(4550), 1131–1132. https://doi.org/10.1126/science.216.4550.1131 (1982).
Google Scholar
O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).
Google Scholar
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506. https://doi.org/10.1016/0016-7037(78)90199-0 (1978).
Google Scholar
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351. https://doi.org/10.1016/0016-7037(81)90244-1 (1981).
Google Scholar
Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).
Google Scholar
McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2), 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).
Google Scholar
Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ 13 C analysis of diet. Oecologia 57(1–2), 32–37. https://doi.org/10.1007/BF00379558 (1983).
Google Scholar
Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106(1–2), 131–148. https://doi.org/10.1016/j.earscirev.2011.02.001 (2011).
Google Scholar
West, J. B. et al. (eds) Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (Springer, 2009).
Cheeseman, A. W. & Cernusak, L. A. Isoscapes: A new dimension in community ecology. Tree Physiol. 36(12), 1456–1459. https://doi.org/10.1093/treephys/tpw099 (2016).
Google Scholar
Hellmann, C., Rascher, K. G., Oldeland, J. & Werner, C. Isoscapes resolve species-specific spatial patterns in plant–plant interactions in an invaded Mediterranean dune ecosystem. Tree Physiol. 36(12), 1460–1470. https://doi.org/10.1093/treephys/tpw075 (2016).
Google Scholar
Chiocchini, F., Portarena, S., Ciolfi, M., Brugnoli, E. & Lauteri, M. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils. Food Chem. 202, 291–301. https://doi.org/10.1016/j.foodchem.2016.01.146 (2016).
Google Scholar
Newton, J. An insect isoscape of UK and Ireland. Rapid Commu. Mass Spectrom. 1, e9126 (2021).
Veen, T. et al. Identifying the African wintering grounds of hybrid flycatchers using a multi–isotope (δ 2 H, δ 13 C, δ 15 N) assignment approach. PLoS ONE 9(5), e98075 (2014).
Google Scholar
Schneider, K. et al. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biol. Biochem. 36(11), 1769–1774. https://doi.org/10.1016/j.soilbio.2004.04.033 (2004).
Google Scholar
Menichetti, L. et al. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: Results from five long-term bare fallow experiments. Oecologia 177(3), 811–821. https://doi.org/10.1007/s00442-014-3114-4 (2015).
Google Scholar
Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002GB001903 (2003).
Google Scholar
Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396(1–2), 1–26. https://doi.org/10.1007/s11104-015-2542-1 (2015).
Google Scholar
Ben-David, M. & Flaherty, E. A. Stable isotopes in mammalian research: A beginner’s guide. J. Mammal. 93(2), 312–328. https://doi.org/10.1644/11-MAMM-S-166.1 (2012).
Google Scholar
del Rio, C. M. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93(2), 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).
Google Scholar
Clementz, M. T. New insight from old bones: Stable isotope analysis of fossil mammals. J. Mammal. 93(2), 368–380. https://doi.org/10.1644/11-MAMM-S-179.1 (2012).
Google Scholar
Inger, R. et al. Temporal and intrapopulation variation in prey choice of wintering geese determined by stable isotope analysis. J. Anim. Ecol. 75(5), 1190–1200. https://doi.org/10.1111/j.1365-2656.2006.01142.x (2006).
Google Scholar
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).
Google Scholar
Jackson, M. C. et al. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE https://doi.org/10.1371/journal.pone.0031757 (2012).
Google Scholar
Semmens, B. X. et al. Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013). Mar. Ecol. Prog. Ser. 490, 285–289. https://doi.org/10.3354/meps10535 (2013).
Google Scholar
Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE https://doi.org/10.2307/1310735 (1988).
Google Scholar
Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92(10), 823–835. https://doi.org/10.1139/cjz-2014-0127 (2010).
Google Scholar
Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-00378-3 (2017).
Google Scholar
Allen, A. et al. Genetic evidence further elucidates the history and extent of badger introductions from Great Britain into Ireland. R. Soc. Open Sci. 7(4), 200–288. https://doi.org/10.1098/rsos.200288 (2020).
Google Scholar
Davies, J. M., Lachno, D. R. & Roper, T. J. The anal gland secretion of the European badger (Meles meles) and its role in social communication. J. Zool. 216(3), 455–463. https://doi.org/10.1111/j.1469-7998.1988.tb02441.x (1988).
Google Scholar
Lüps, P., Roper, T. J. & Stocker, G. Stomach contents of badgers (Meles meles L.) in central Switzerland. Mammalia 51(4), 559–570. https://doi.org/10.1515/mamm.1987.51.4.559 (1987).
Google Scholar
Roper, T. J. The European badger Meles meles: Food specialist or generalist?. J. Zool. 234(3), 437–452. https://doi.org/10.1111/j.1469-7998.1994.tb04858.x (1994).
Google Scholar
Roper, T. J. Badger Meles meles setts–architecture, internal environment and function. Mamm. Rev. 22(1), 43–53. https://doi.org/10.1111/j.1365-2907.1992.tb00118.x (1992).
Google Scholar
Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549. https://doi.org/10.1111/j.1469-7998.1999.tb01015.x (1999).
Google Scholar
Robertson, A., McDonald, R. A., Delahay, R. J., Kelly, S. D. & Bearhop, S. Individual foraging specialisation in a social mammal: The European badger (Meles meles). Oecologia 176(2), 409–421. https://doi.org/10.1007/s00442-014-3019-2 (2014).
Google Scholar
Haussmann, N. S. Soil movement by burrowing mammals: A review comparing excavation size and rate to body mass of excavators. Prog. Phys. Geogr. 41(1), 29–45. https://doi.org/10.1177/0309133316662569 (2017).
Google Scholar
Cabana, G. & Rasmussen, J. B. Comparison of aquatic food chains using nitrogen isotopes. Proc. Acad. Natl. Sci. 93(20), 10844–10847. https://doi.org/10.1073/pnas.93.20.10844 (1996).
Google Scholar
Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136(2), 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).
Google Scholar
Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5(1), 1–11. https://doi.org/10.1038/srep13062 (2015).
Google Scholar
Britain, G. The strategy for achieving officially bovine tuberculosis free status for England. Department for Environment, Food & Rural Affairs. https://www.gov.uk/government/publications/a-strategy-for-achieving-officially-bovine-tuberculosis-free-status-for-england. (2014).
Ireland, G. Spending Review 2019 Animal Health: TB Eradication. Economics and Planning Division, Department of Agriculture, Food and the Marine. http://budget.gov.ie/Budgets/2020/Documents/Budget/Animal%20Health%20-%20TB%20Eradication.pdf. (2019).
Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J. Zool. 184(1), 1–19. https://doi.org/10.1111/j.1469-7998.1978.tb03262.x (1978).
Google Scholar
Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—Conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildl. Conserv. Farmland 2, 65–95 (2015).
McDonald, J. L., Robertson, A. & Silk, M. J. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112. https://doi.org/10.1111/1365-2656.12743 (2018).
Google Scholar
Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728. https://doi.org/10.1111/j.1469-7998.1997.tb05821.x (1997).
Google Scholar
Desktop, E. A. Release 10 437–438 (Environmental Systems Research Institute, 2011).
Kostka, B.I., Landscape ecology, diet composition and energetics of the Eurasian badger (Meles meles). Unpublished PhD thesis, Queen’s University Belfast. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579755. (2012).
Scheppers, T. L. et al. Estimating social group size of Eurasian badgers Meles meles by genotyping remotely plucked single hairs. Wildl. Biol. 13(2), 195–207. https://doi.org/10.2981/0909-6396(2007)13[195:ESGSOE]2.0.CO;2 (2007).
Google Scholar
Geological Survey Ireland. Tellus Geochemical Survey: Shallow Topsoil Data from the Border and West of Ireland. Department of the Environment, Climate and Communications. https://secure.dccae.gov.ie/GSI_DOWNLOAD/Geochemistry/Reports/Tellus_A_geochemistry_data_report_2020_v1.0.pdf. Accessed 7Jun 2021.
Smyth, D. Methods used in the Tellus Geochemical Mapping of Northern Ireland. http://nora.nerc.ac.uk/id/eprint/14008. (2007).
Murray, R, McCann, T. P. & Cooper, A. A land classification and landscape ecological survey of Northern Ireland. Report, University of Ulster, Coleraine (1992).
Stewart, P. D. & Macdonald, D. W. Age, sex, and condition as predictors of moult and the efficacy of a novel fur-clip technique for individual marking of the European badger (Meles meles). J. Zool. 241(3), 543–550. https://doi.org/10.1111/j.1469-7998.1997.tb04846.x (1997).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021)
Met Office. UK Daily Temperature Data, Part of the Met Office Integrated Data Archive System (MIDAS). NCAS British Atmospheric Data Centre, (2006). Accessed 2 Sep 2019.
Mardia, K. V., Kent, J. T. & Bibby, J. M. Multivariate Analysis (Academic Press Inc, 1979).
Google Scholar
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).
Google Scholar
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A. & Legg, T. State of the UK climate 2017. Int. J. Climatol. 38, 1–35. https://doi.org/10.1139/z99-165 (2018).
Google Scholar
Kassambara, A. & Mundt, F., Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses, 76. https://cran.microsoft.com/snapshot/2016-11-30/web/packages/factoextra/factoextra.pdf. (2017).
Funck, J., Bataille, C., Rasic, J. & Wooller, M. A bio-available strontium isoscape for eastern Beringia: A tool for tracking landscape use of Pleistocene megafauna. J. Quat. Sci. 36(1), 76–90. https://doi.org/10.1002/jqs.3262 (2021).
Google Scholar
Reddin, C. J., Bothwell, J. H., O’Connor, N. E. & Harrod, C. The effects of spatial scale and isoscape on consumer isotopic niche width. Funct. Ecol. 32(4), 904–915. https://doi.org/10.1111/1365-2435.13026 (2018).
Google Scholar
Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87(3), 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).
Google Scholar
Fabrizio, M. et al. Habitat suitability vs landscape connectivity determining roadkill risk at a regional scale: A case study on European badger (Meles meles). Eur. J. Wildl. Res. 65(1), 7. https://doi.org/10.1007/s10344-018-1241-7 (2019).
Google Scholar
Rosalino, L. M. et al. Climate and landscape changes as driving forces for future range shift in southern populations of the European badger. Sci. Rep. 9(1), 1–15. https://doi.org/10.1038/s41598-019-39713-1 (2019).
Google Scholar
Potts, J. R., Fagan, W. F. & Mourão, G. Deciding when to intrude on a neighbour: Quantifying behavioural mechanisms for temporary territory expansion. Thyroid Res. 12(3), 307–318. https://doi.org/10.1007/s12080-018-0396-x (2019).
Google Scholar
Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European Badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45(10), 823–837. https://doi.org/10.1007/s10886-019-01113-0 (2019).
Google Scholar
Kurek, P. Topsoil mixing or fertilization? Forest flora changes in the vicinity of badgers’ (Meles meles L.) setts and latrines. Plant Soil 437(1–2), 327–340. https://doi.org/10.1007/s11104-019-03984-4 (2019).
Google Scholar
Abduriyim, S. et al. Variation in pancreatic amylase gene copy number among Eurasian badgers (Carnivora, Mustelidae, Meles) and its relationship to diet. J. Zool. 308(1), 28–36. https://doi.org/10.1111/jzo.12649 (2019).
Google Scholar
Balestrieri, A., Remonti, L., Saino, N. & Raubenheimer, D. The ‘omnivorous badger dilemma’: Towards an integration of nutrition with the dietary niche in wild mammals. Mamm. Rev. 49(4), 324–339. https://doi.org/10.1111/mam.12164 (2019).
Google Scholar
Noonan, M. J. et al. Climate and the individual: Inter-annual variation in the autumnal activity of the European badger (Meles meles). PLoS ONE https://doi.org/10.1371/journal.pone.0083156 (2014).
Google Scholar
Tsunoda, M., Newman, C., Buesching, C. D., Macdonald, D. W. & Kaneko, Y. Badger setts provide thermal refugia, buffering changeable surface weather conditions. J. Therm. Biol. 74, 226–233. https://doi.org/10.1016/j.jtherbio.2018.04.005 (2018).
Google Scholar
Source: Ecology - nature.com