in

Spatial and temporal changes in moth assemblages along an altitudinal gradient, Jeju-do island

  • Thornton, I. Island Colonization: The Origin and Development of Island Communities (Cambridge University Press, 2007).

    Book 

    Google Scholar 

  • Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. 110, 15307–15312 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vitousek, P., Adsersen, H. & Loope, L. Introduction. In Islands: Biological Diversity and Ecosystem Function (eds Vitousek, P. et al.) 1–6 (Berlin, 1995).

    Chapter 

    Google Scholar 

  • Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, 2007).

    Google Scholar 

  • Lomolino, M., Brown, J. & Sax, D. Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, J. & Ricklefs, R.) 13–51 (Princeton University Press, 2010).

    Google Scholar 

  • Colom, P., Carreras, D. & Stefanescu, C. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodivers. Conserv. 28, 1837–1851 (2019).

    Article 

    Google Scholar 

  • Preston, F. W. The canonical distribution of commonness and rarity, part II. Ecology 43, 410–432 (1962).

    Article 

    Google Scholar 

  • Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).

    Book 

    Google Scholar 

  • Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9(2), 215–227 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Field, R. et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 36, 132–147 (2009).

    Article 

    Google Scholar 

  • Brehm, G., Süssenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466 (2003).

    Article 

    Google Scholar 

  • Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).

    Article 

    Google Scholar 

  • Beck, J. & Kitching, I. J. Drivers of moth species richness on tropical altitudinal gradients: A cross-regional comparison. Glob. Ecol. Biogeogr. 18, 361–371 (2009).

    Article 

    Google Scholar 

  • Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical A ustralian rainforests. Aust. Ecol. 41, 197–208 (2016).

    Article 

    Google Scholar 

  • Maunsell, S. C. et al. Elevational turnover in the composition of leaf miners and their interactions with host plants in Australian subtropical rainforest. Aust. Ecol. 41, 238–247 (2016).

    Article 

    Google Scholar 

  • McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).

    Google Scholar 

  • Yu, X. D., Lü, L., Luo, T. H. & Zhou, H. Z. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in Southwestern China. PLoS ONE 8, e69177 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).

    Article 

    Google Scholar 

  • Szewczyk, T. & McCain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahbek, C. The elevational gradient of species richness: A uniform pattern?. Ecography 18, 200–205 (1995).

    Article 

    Google Scholar 

  • Vitousek, P. M. Oceanic islands as model systems for ecological studies. J. Biogeogr. 29, 573–582 (2002).

    Article 

    Google Scholar 

  • Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol. Conserv. 19, e00670 (2019).

    Article 

    Google Scholar 

  • Meyer, W. M. III. et al. Ground-dwelling arthropod communities of a sky island mountain range in Southeastern Arizona, USA: Obtaining a baseline for assessing the effects of climate change. PLoS ONE 10, e0135210 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, W. S. Biogeography of Korean plants 335 (Geobook, 2007) (in Korean).

    Google Scholar 

  • Kitching, R. L. et al. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J. Appl. Ecol. 37, 284–297 (2000).

    Article 

    Google Scholar 

  • Froidevaux, J. S., Broyles, M. & Jones, G. Moth responses to sympathetic hedgerow management in temperate farmland. Agric. Ecosyst. Environ. 270, 55–64 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect Conserv. Div. 6, 5–19 (2013).

    Article 

    Google Scholar 

  • Keret, N. M., Mutanen, M. J., Orell, M. I., Itämies, J. H. & Välimäki, P. M. Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 192, 1085–1098 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wenzel, M., Schmitt, T., Weitzel, M. & Seitz, A. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Conserv. 128, 542–552 (2006).

    Article 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • Zenker, M. M. et al. Diversity and composition of Arctiinae moth assemblages along elevational and spatial dimensions in Brazilian Atlantic Forest. J. Insect Conserv. 19, 129–140 (2015).

    Article 

    Google Scholar 

  • Brehm, G. & Fiedler, K. Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. J. Biogeogr. 30, 431–440 (2003).

    Article 

    Google Scholar 

  • McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (Wiley, Chichester, 2010).

    Google Scholar 

  • Heinrich, B. The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation 601 (Harvard University Press, 1993).

    Book 

    Google Scholar 

  • Heinrich, B. Thermoregulation in Endothermic Insects: Body temperature is closely attuned to activity and energy supplies. Science 185, 747–756 (1974).

    Article 
    PubMed 

    Google Scholar 

  • May, M. L. Insect thermoregulation. Annu. Rev. Entomol. 24, 313–349 (1979).

    Article 

    Google Scholar 

  • Heidrich, L. et al. Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography 44, 1169–1179 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Holloway, J. D. Macrolepidoptera diversity in the Indo-Australian tropics, geographic, biotopic and taxonomic variations. Biol. J. Linn. Soc. 30, 325–341 (1987).

    Article 

    Google Scholar 

  • Axmacher, J. C. et al. Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Divers. Distrib. 10, 293–302 (2004).

    Article 

    Google Scholar 

  • Heinrich, B. & Mommsen, T. P. Flight of winter moths near 0°C. Science 228, 177–179 (1985).

    Article 
    PubMed 

    Google Scholar 

  • Rydell, J. & Lancaster, W. C. Flight and thermoregulation in moths were shaped by predation from bats. Oikos 88, 13–18 (2000).

    Article 

    Google Scholar 

  • Skou, P. The geometroid moths of North Europe. Entomonograph, Vol. 6. Brill, Leiden. (1986).

  • Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, noctuoidea). Syst. Entomol. 37, 102–124 (2012).

    Article 

    Google Scholar 

  • Fiedler, K., Brehm, G., Hilt, N., Sussenbach, D. & Hauser, C. L. Variation of diversity patterns across moth families along a tropical altitudinal gradient. Ecol. Stud. 198, 167–179 (2008).

    Article 

    Google Scholar 

  • Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).

    Article 

    Google Scholar 

  • Beck, J. & Chey, V. K. Explaining the elevational diversity pattern of geometrid moths from Borneo: A test of five hypotheses. J. Biogeogr. 35, 1452–1464 (2008).

    Article 

    Google Scholar 

  • Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kwon, T. S. Ants foraging on grasses in South Korea: High diversity in Jeju Island and negative correlation with aphids. J. Asia-Pac. Biodivers. 10, 465–471 (2017).

    Article 

    Google Scholar 

  • Han, E. K. et al. A disjunctive marginal edge of evergreen broad-leaved oak (Quercus gilva) in East Asia: The high genetic distinctiveness and unusual diversity of Jeju island populations and insight into a massive, independent postglacial colonization. Genes 11, 1114 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chi, Y., Shi, H., Wang, Y., Guo, Z. & Wang, E. Evaluation on island ecological vulnerability and its spatial heterogeneity. Mar. Pollut. Bull. 125, 216–241 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Tree species diversity influences herbivore abundance and damage: Meta-analysis of long-term forest experiments. Oecologia 152, 287–298 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Root, R. B. Organization of plant–arthropod association in simple and diverse habitats: The fauna of collards (I. Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).

    Article 

    Google Scholar 

  • Otway, S. J., Hector, A. & Lawton, J. H. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 74, 234–240 (2005).

    Article 

    Google Scholar 

  • Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article 

    Google Scholar 

  • Qian, H. Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res. 25, 629–637 (2010).

    Article 

    Google Scholar 

  • Major, J. A climatic index to vascular plant activity. Ecology 44, 485–498 (1963).

    Article 

    Google Scholar 

  • Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333 (1993).

    Article 

    Google Scholar 

  • Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Storch, D. et al. Energy, range dynamics and global species richness patterns: Reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9, 1308–1320 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).

    Article 

    Google Scholar 

  • Choi, S. W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).

    Article 

    Google Scholar 

  • Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. The geographical structure of British bird distributions: Diversity, spatial turnover and scale. J. Anim. Ecol. 70, 966–979 (2001).

    Article 

    Google Scholar 

  • Choi, S. W. A high mountain moth assemblage quickly recovers after fire. Ann. Entomol. Soc. Am. 111, 304–311 (2018).

    Google Scholar 

  • van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).

    Article 

    Google Scholar 

  • De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. 110, 18561–18565 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).

    Article 

    Google Scholar 

  • White, E. R. Minimum time required to detect population trends: The need for long-term monitoring programs. Bioscience 69, 40–46 (2019).

    Article 

    Google Scholar 

  • Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).

    Google Scholar 

  • Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Div. 13, 103–114 (2020).

    Article 

    Google Scholar 

  • Kim, J. W., Boo, K. O., Choi, J. T. & Byun, Y. H. Climate Change of 100 Years on the Korean Peninsula (National Institute of Meteorological Science, 2018).

    Google Scholar 

  • Kim, S. S., Beljaev, E. A. & Oh, S. H. Illustrated Catalogue of Geometridae in Korea (Lepidoptera: Geometrinae, Ennominae) (Korea Research Institute of Bioscience and Biotechnology & Center for Insect Systematics, 2001).

    Google Scholar 

  • Kononenko, V.S., Ahn, S.B. & Ronkay, L. Illustrated catalogue of Noctuidae in Korea (Lepidoptera). Insects of Korea 3. KRIBB & CIS, Junghaengsa (1998).

  • Shin, Y.H. Coloured illustrations of the moths of Korea. Academybook (2001).

  • Kim, S.S., Choi, S.W., Sohn, J.C., Kim, T. & Lee, B.W. The Geometrid moths of Korea (Lepidoptera: Geometridae). Junghaengsa (2016).

  • Kim, C. G. & Kim, N. W. Altitudinal pattern of evapotranspiration and water need for upland crops in Jeju Island. J. Korea Water Resour. Assoc. 48, 915–923 (2015).

    Article 

    Google Scholar 

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, 1988).

    Book 

    Google Scholar 

  • Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).

    MATH 

    Google Scholar 

  • R Development Core Team. R 4.0.3. R: A language and environment for statistical computing. R Foundation for statistical computing Vienna. Austria. URL http://www.R-project.org. (2020).

  • Pohlert, T. Non-parametric trend tests and change-point detection. R-package version 0.0.1. (2020).

  • Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).

    Google Scholar 

  • Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Colwell, R. K. Estiamtes, Version 91: Statistical Estimation of Species Richness and Shared Species from Samples (University of Connecticut, 2013).

    Google Scholar 

  • Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143 (2010).

    Article 

    Google Scholar 

  • Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Policy Hackathon produces new solutions for technology policy challenges

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference