Thornton, I. Island Colonization: The Origin and Development of Island Communities (Cambridge University Press, 2007).
Google Scholar
Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl Acad. Sci. 110, 15307–15312 (2013).
Google Scholar
Vitousek, P., Adsersen, H. & Loope, L. Introduction. In Islands: Biological Diversity and Ecosystem Function (eds Vitousek, P. et al.) 1–6 (Berlin, 1995).
Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, 2007).
Lomolino, M., Brown, J. & Sax, D. Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, J. & Ricklefs, R.) 13–51 (Princeton University Press, 2010).
Colom, P., Carreras, D. & Stefanescu, C. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodivers. Conserv. 28, 1837–1851 (2019).
Google Scholar
Preston, F. W. The canonical distribution of commonness and rarity, part II. Ecology 43, 410–432 (1962).
Google Scholar
Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).
Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9(2), 215–227 (2006).
Google Scholar
Field, R. et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 36, 132–147 (2009).
Google Scholar
Brehm, G., Süssenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466 (2003).
Google Scholar
Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
Google Scholar
Beck, J. & Kitching, I. J. Drivers of moth species richness on tropical altitudinal gradients: A cross-regional comparison. Glob. Ecol. Biogeogr. 18, 361–371 (2009).
Google Scholar
Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical A ustralian rainforests. Aust. Ecol. 41, 197–208 (2016).
Google Scholar
Maunsell, S. C. et al. Elevational turnover in the composition of leaf miners and their interactions with host plants in Australian subtropical rainforest. Aust. Ecol. 41, 238–247 (2016).
Google Scholar
McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).
Yu, X. D., Lü, L., Luo, T. H. & Zhou, H. Z. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in Southwestern China. PLoS ONE 8, e69177 (2013).
Google Scholar
Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).
Google Scholar
Szewczyk, T. & McCain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404 (2016).
Google Scholar
Rahbek, C. The elevational gradient of species richness: A uniform pattern?. Ecography 18, 200–205 (1995).
Google Scholar
Vitousek, P. M. Oceanic islands as model systems for ecological studies. J. Biogeogr. 29, 573–582 (2002).
Google Scholar
Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecol. Conserv. 19, e00670 (2019).
Google Scholar
Meyer, W. M. III. et al. Ground-dwelling arthropod communities of a sky island mountain range in Southeastern Arizona, USA: Obtaining a baseline for assessing the effects of climate change. PLoS ONE 10, e0135210 (2015).
Google Scholar
Kong, W. S. Biogeography of Korean plants 335 (Geobook, 2007) (in Korean).
Kitching, R. L. et al. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J. Appl. Ecol. 37, 284–297 (2000).
Google Scholar
Froidevaux, J. S., Broyles, M. & Jones, G. Moth responses to sympathetic hedgerow management in temperate farmland. Agric. Ecosyst. Environ. 270, 55–64 (2019).
Google Scholar
Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect Conserv. Div. 6, 5–19 (2013).
Google Scholar
Keret, N. M., Mutanen, M. J., Orell, M. I., Itämies, J. H. & Välimäki, P. M. Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 192, 1085–1098 (2020).
Google Scholar
Wenzel, M., Schmitt, T., Weitzel, M. & Seitz, A. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Conserv. 128, 542–552 (2006).
Google Scholar
Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
Google Scholar
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Google Scholar
Zenker, M. M. et al. Diversity and composition of Arctiinae moth assemblages along elevational and spatial dimensions in Brazilian Atlantic Forest. J. Insect Conserv. 19, 129–140 (2015).
Google Scholar
Brehm, G. & Fiedler, K. Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. J. Biogeogr. 30, 431–440 (2003).
Google Scholar
McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (Wiley, Chichester, 2010).
Heinrich, B. The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation 601 (Harvard University Press, 1993).
Google Scholar
Heinrich, B. Thermoregulation in Endothermic Insects: Body temperature is closely attuned to activity and energy supplies. Science 185, 747–756 (1974).
Google Scholar
May, M. L. Insect thermoregulation. Annu. Rev. Entomol. 24, 313–349 (1979).
Google Scholar
Heidrich, L. et al. Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography 44, 1169–1179 (2021).
Google Scholar
Holloway, J. D. Macrolepidoptera diversity in the Indo-Australian tropics, geographic, biotopic and taxonomic variations. Biol. J. Linn. Soc. 30, 325–341 (1987).
Google Scholar
Axmacher, J. C. et al. Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Divers. Distrib. 10, 293–302 (2004).
Google Scholar
Heinrich, B. & Mommsen, T. P. Flight of winter moths near 0°C. Science 228, 177–179 (1985).
Google Scholar
Rydell, J. & Lancaster, W. C. Flight and thermoregulation in moths were shaped by predation from bats. Oikos 88, 13–18 (2000).
Google Scholar
Skou, P. The geometroid moths of North Europe. Entomonograph, Vol. 6. Brill, Leiden. (1986).
Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, noctuoidea). Syst. Entomol. 37, 102–124 (2012).
Google Scholar
Fiedler, K., Brehm, G., Hilt, N., Sussenbach, D. & Hauser, C. L. Variation of diversity patterns across moth families along a tropical altitudinal gradient. Ecol. Stud. 198, 167–179 (2008).
Google Scholar
Longino, J. T. & Colwell, R. K. Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2, 1–20 (2011).
Google Scholar
Beck, J. & Chey, V. K. Explaining the elevational diversity pattern of geometrid moths from Borneo: A test of five hypotheses. J. Biogeogr. 35, 1452–1464 (2008).
Google Scholar
Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).
Google Scholar
Kwon, T. S. Ants foraging on grasses in South Korea: High diversity in Jeju Island and negative correlation with aphids. J. Asia-Pac. Biodivers. 10, 465–471 (2017).
Google Scholar
Han, E. K. et al. A disjunctive marginal edge of evergreen broad-leaved oak (Quercus gilva) in East Asia: The high genetic distinctiveness and unusual diversity of Jeju island populations and insight into a massive, independent postglacial colonization. Genes 11, 1114 (2020).
Google Scholar
Chi, Y., Shi, H., Wang, Y., Guo, Z. & Wang, E. Evaluation on island ecological vulnerability and its spatial heterogeneity. Mar. Pollut. Bull. 125, 216–241 (2017).
Google Scholar
Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Tree species diversity influences herbivore abundance and damage: Meta-analysis of long-term forest experiments. Oecologia 152, 287–298 (2007).
Google Scholar
Root, R. B. Organization of plant–arthropod association in simple and diverse habitats: The fauna of collards (I. Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).
Google Scholar
Otway, S. J., Hector, A. & Lawton, J. H. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 74, 234–240 (2005).
Google Scholar
Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
Google Scholar
Qian, H. Environment–richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecol. Res. 25, 629–637 (2010).
Google Scholar
Major, J. A climatic index to vascular plant activity. Ecology 44, 485–498 (1963).
Google Scholar
Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333 (1993).
Google Scholar
Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).
Google Scholar
Storch, D. et al. Energy, range dynamics and global species richness patterns: Reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9, 1308–1320 (2006).
Google Scholar
Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).
Google Scholar
Choi, S. W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).
Google Scholar
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).
Google Scholar
Lennon, J. J., Koleff, P., Greenwood, J. J. D. & Gaston, K. J. The geographical structure of British bird distributions: Diversity, spatial turnover and scale. J. Anim. Ecol. 70, 966–979 (2001).
Google Scholar
Choi, S. W. A high mountain moth assemblage quickly recovers after fire. Ann. Entomol. Soc. Am. 111, 304–311 (2018).
van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).
Google Scholar
De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. 110, 18561–18565 (2013).
Google Scholar
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
Google Scholar
Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).
Google Scholar
White, E. R. Minimum time required to detect population trends: The need for long-term monitoring programs. Bioscience 69, 40–46 (2019).
Google Scholar
Forister, M. L., Pelton, E. M. & Black, S. H. Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1, e80 (2019).
Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Div. 13, 103–114 (2020).
Google Scholar
Kim, J. W., Boo, K. O., Choi, J. T. & Byun, Y. H. Climate Change of 100 Years on the Korean Peninsula (National Institute of Meteorological Science, 2018).
Kim, S. S., Beljaev, E. A. & Oh, S. H. Illustrated Catalogue of Geometridae in Korea (Lepidoptera: Geometrinae, Ennominae) (Korea Research Institute of Bioscience and Biotechnology & Center for Insect Systematics, 2001).
Kononenko, V.S., Ahn, S.B. & Ronkay, L. Illustrated catalogue of Noctuidae in Korea (Lepidoptera). Insects of Korea 3. KRIBB & CIS, Junghaengsa (1998).
Shin, Y.H. Coloured illustrations of the moths of Korea. Academybook (2001).
Kim, S.S., Choi, S.W., Sohn, J.C., Kim, T. & Lee, B.W. The Geometrid moths of Korea (Lepidoptera: Geometridae). Junghaengsa (2016).
Kim, C. G. & Kim, N. W. Altitudinal pattern of evapotranspiration and water need for upland crops in Jeju Island. J. Korea Water Resour. Assoc. 48, 915–923 (2015).
Google Scholar
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
Magurran, A. E. Ecological Diversity and its Measurement (Princeton University Press, 1988).
Google Scholar
Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).
Google Scholar
R Development Core Team. R 4.0.3. R: A language and environment for statistical computing. R Foundation for statistical computing Vienna. Austria. URL http://www.R-project.org. (2020).
Pohlert, T. Non-parametric trend tests and change-point detection. R-package version 0.0.1. (2020).
Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).
Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).
Google Scholar
Colwell, R. K. Estiamtes, Version 91: Statistical Estimation of Species Richness and Shared Species from Samples (University of Connecticut, 2013).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143 (2010).
Google Scholar
Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).
Google Scholar
Source: Ecology - nature.com