in

Spatial and temporal stability in the genetic structure of a marine crab despite a biogeographic break

[adace-ad id="91168"]
  • Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Progr. Ser. 393, 1–12 (2009).

    ADS 
    Article 

    Google Scholar 

  • Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).

    Google Scholar 

  • Jenkins, S. R. & Hawkins, S. J. Barnacle larval supply to sheltered rocky shores: a limiting factor?. Hydrobiologia 503, 143–151 (2003).

    Article 

    Google Scholar 

  • Pineda, J., Hare, J. A. & Sponaugle, S. Consequences for population connectivity. Oceanography 20, 22–39 (2007).

    Article 

    Google Scholar 

  • Shanks, A. L. Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In Ecology of Marine Invertebrate Larvae (ed. McEdward, L. R.) 324–367 (CRC, Boca Raton, 1995).

    Google Scholar 

  • Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Bradford, R. W., Griffin, D. & Bruce, B. D. Estimating the duration of the pelagic phyllosoma phase of the southern rock lobster, Jasus edwardsii (Hutton). Mar. Freshw. Res. 66, 213–219 (2015).

    Article 

    Google Scholar 

  • Mileikovsky, S. A. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. 23, 11–17 (1973).

    Article 

    Google Scholar 

  • Garrison, L. P. Vertical migration behavior and larval transport in brachyuran crabs. Mar. Ecol. Progr. Ser. 176, 103–113 (1999).

    ADS 
    Article 

    Google Scholar 

  • Morgan, S. G. & Fisher, J. L. Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast. Mar. Ecol. Progr. Ser. 404, 109–126 (2010).

    ADS 
    Article 

    Google Scholar 

  • Cowen, R. K. & Castro, L. R. Relation of coral reef fish larval distributions to island scale circulation around Barbados, west indies. Bull. Mar. Sci. 54, 228–224 (1994).

    Google Scholar 

  • Rudorff, C. A. G., Lorenzzetti, J. A., Gherardia, D. F. M. & Lins-Oliveira, J. E. Modeling spiny lobster larval dispersion in the Tropical Atlantic. Fish. Res. 96, 206–215 (2009).

    Article 

    Google Scholar 

  • Allee, W. C. Studies in marine ecology. IV. The effect of temperature in limiting the geographic range of invertebrates of the Woods Hole littoral. Ecology 4, 341–354 (1923).

    Article 

    Google Scholar 

  • Burton, R. S. Intraspecific phylogeography across the Point Conception biogeographic boundary. Evolution 52, 734–745 (1998).

    PubMed 
    Article 

    Google Scholar 

  • Lancellotti, D. A. & Vasquez, J. A. Biogeographical patterns of benthic macroinvertebrates in the southeastern Pacific littoral. J. Biogeogr. 26, 1001–1006 (1999).

    Article 

    Google Scholar 

  • Hormazabal, S., Shaffer, G. & Leth, O. Coastal transition zone off Chile. J. Geophys. Res. 109, C01021 (2004).

    ADS 

    Google Scholar 

  • Mcdonald, A. M. The global ocean circulation: a hydrographic estimate and regional analysis. Prog. Oceanogr. 41, 281–382 (1998).

    ADS 
    Article 

    Google Scholar 

  • Montecino, V. & Lange, C. B. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Progr. Oceanogr. 83, 65–79 (2009).

    ADS 
    Article 

    Google Scholar 

  • Haye, P. A. et al. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific Coast of Chile with differing dispersal potential. PLoS ONE 9, e88613 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kelly, R. P. & Palumbi, S. R. Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5, e8594 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gaylord, B. & Gaines, S. D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789 (2000).

    PubMed 
    Article 

    Google Scholar 

  • Wares, J. P., Gaines, S. D. & Cunningham, C. W. A comparative study of asymmetric migration events across a marine biogeographic boundary. Evolution 55, 295–306 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).

    Article 

    Google Scholar 

  • Jenkins, S. R., Marshall, D. & Fraschetti, S. Settlement and recruitment. In Marine Hard Bottom Communities, Ecological Studies Vol. 206 (ed. Wahl, M.) 177–190 (Springer, Berlin, 2009).

    Chapter 

    Google Scholar 

  • Marino, I. A. M. et al. Genetic heterogeneity in populations of the Mediterranean shore crab, Carcinus aestuarii (Decapoda, Portunidae), from the Venice Lagoon. Estuar. Coast. Shelf. Sci. 87, 135–144 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sernapesca. Estadística de pesca de Chile. http://www.sernapesca.cl/informes/estadisticas (2022).

  • Nation JD (1975) The Genus Cancer: Crustacea: Brachyura): Systematics, biogeography and fossil record. Nat. Hist. Mus. Los Angeles County Sci, Bull. 23 (1975).

  • Pardo, L. M., Fuentes, J. P., Olguin, A. & Orensanz, J. M. L. Reproductive maturity in the edible Chilean crab Cancer edwardsii: methodological and management considerations. J. Mar. Biol. Assoc. U. K. 89, 1627–1634 (2009).

    Article 

    Google Scholar 

  • Rojas-Hernández, N., Veliz, D. & Pardo, L. M. Use of novel microsatellite markers for population and paternity analysis in the commercially important crab Metacarcinus edwardsii. Mar. Biol. Res. 10, 839–844 (2014).

    Article 

    Google Scholar 

  • Pardo, L. M., Riveros, M. P., Fuentes, J. P., Rojas-Hernández, N. & Veliz, D. An effective sperm competition avoidance strategy in crabs drives genetic monogamy despite evidence of polyandry. Behav. Ecol. Sociobiol. 70, 73–81 (2016).

    Article 

    Google Scholar 

  • Pardo, L. M. et al. High fishing intensity reduces females’ sperm reserve and brood fecundity in a eubrachyuran crab subject to sex- and size biased harvest. ICES J. Mar. Sci. 74, 2459–2469 (2017).

    Article 

    Google Scholar 

  • Pardo, L. M., Mora-Vásquez, P. & Garcés-Vargas, J. Asentamiento diario de megalopas de jaibas del género Cancer en un estuario micromareal. Lat. Am. J. Aquat. Res. 40, 142–152 (2012).

    Article 

    Google Scholar 

  • Pardo, L. M., Rubilar, P. R. & Fuentes, J. P. North Patagonian estuaries appear to function as nursery habitats for marble crab (Metacarcinus edwardsii). Reg. Stud. Mar. Sci. 36, 101315 (2020).

    Google Scholar 

  • Quintana, R. Larval development of the Edible crab, Cancer edwardsi Bell, 1835 under laboratory conditions (Decapoda, Brachyura). Rep. USA Mar. Biol. Inst. 5, 1–19 (1983).

    Google Scholar 

  • Rojas-Hernández, N., Veliz, D., Riveros, M. P., Fuentes, J. P. & Pardo, L. M. Highly connected populations and temporal stability in allelic frequencies of a harvested crab from southern Pacific. PLoS ONE 11, e0166029 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Strub, P. T., James, C., Montecino, V., Rutllant, J. A. & Blanco, J. L. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Progr. Oceanogr. 172, 159–198 (2019).

    ADS 
    Article 

    Google Scholar 

  • Beerli, P., Mashayekhi, S., Sadeghi, M., Khodaei, M. & Shaw, K. Population genetic inference with MIGRATE. Curr. Protoc. Bioinform. 68, e87 (2019).

    Article 

    Google Scholar 

  • Kilian, A. et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Weiss, M. et al. Influence of temperature on the larval development of the edible crab, Cancer pagurus. J. Mar Biol. Assoc. UK 89, 753–759 (2009).

    CAS 
    Article 

    Google Scholar 

  • Pampoulie, C. et al. A pilot genetic study reveals the absence of spatial genetic structure in Norway lobster (Nephrops norvegicus) on fishing grounds in Icelandic waters. ICES J. Mar. Sci. 68, 20–25 (2011).

    Article 

    Google Scholar 

  • Costlow, J. D. J. & Bookhout, C. G. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. 116, 373–396 (1959).

    Article 

    Google Scholar 

  • Ungfors, A., McKeown, N. J., Shaw, P. W. & Andre, C. Lack of spatial genetic variation in the edible crab (Cancer pagurus) in the Kattegat – Skagerrak area. ICES J. Mar. Sci. 66, 462–469 (2009).

    Article 

    Google Scholar 

  • Lacerda, A. L. F. et al. High connectivity among blue crab (Callinectes sapidus) populations in the Western South Atlantic. PLoS ONE 11, e0153124 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Taylor, M. S. & Hellberg, M. E. Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol. Ecol. 15, 695–707 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arranz, V., Fewster, R. M. & Lavery, S. D. Geographic concordance of genetic barriers in New Zealand coastal marine species. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 3607–3625 (2021).

    Article 

    Google Scholar 

  • Ayre, D. J., Minchinton, T. E. & Perrin, C. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier?. Mol. Ecol. 18, 1887–1903 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barber, P. H., Erdmann, M. V. & Palumbi, S. R. Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 60, 1825–1839 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Macaya, E. C. & Zuccarello, G. C. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar. Ecol. Progr. Ser. 420, 103–112 (2010).

    ADS 
    Article 

    Google Scholar 

  • Ruiz, M., Tarifeño, E., Llanos-Rivera, A., Padget, C. & Campos, B. Efecto de la temperatura en el desarrollo embrionario y larval del mejillón, Mytilus galloprovincialis (Lamarck 1819). Rev. Biol. Mar. Oceanogr. 431, 51–61 (2008).

    Google Scholar 

  • Toro, J. E., Castro, G. C., Ojeda, J. A. & Vergara, A. M. Allozymic variation and differentiation in the Chilean blue mussel, Mytilus chilensis, along its natural distribution. Genet. Mol. Biol. 29, 174–179 (2006).

    CAS 
    Article 

    Google Scholar 

  • Araneda, C., Larraín, M. A., Hecht, B. & Narum, S. Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol. Evol. 6, 3632–3644 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Disalvo, L. H. Observations on the larval and post-metamorphic life of Concholepas concholepas (Bruguière, 1789) in laboratory culture. Veliger 30, 358–368 (1988).

    Google Scholar 

  • Cardenas, L., Castilla, J. C. & Viard, F. Hierarchical analysis of the population genetic structure in Concholepas concholepas, a marine mollusk with a long-lived dispersive larva. Mar. Ecol. 37, 359–369 (2016).

    ADS 
    Article 

    Google Scholar 

  • Domingues, C. P., Creer, S., Taylor, M. I., Queiroga, H. & Carvalho, G. R. Genetic structure of Carcinus maenas within its native range: larval dispersal and oceanographic variability. Mar. Ecol. Progr. Ser. 410, 111–123 (2010).

    ADS 
    Article 

    Google Scholar 

  • Domingues, C. P., Creer, S., Taylor, M. I., Queiroga, H. & Carvalho, G. R. Temporal genetic homogeneity among shore crab (Carcinus maenas) larval events supplied to an estuarine system on the Portuguese northwest coast. Heredity 106, 832–840 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vadopalas, B., Pietsch, T. & Friedman, C. The proper name for the geoduck: resurrection of Panopea generosa Gould, 1850, from the synonymy of Panopea abrupta (Conrad, 1849) (Bivalvia: Myoida: Hiatellidae). Malacologia 52, 169–173 (2010).

    Article 

    Google Scholar 

  • Cassista, M. C. & Hart, M. W. Spatial and temporal genetic homogeneity in the Arctic surfclam (Mactromeris polynyma). Mar. Biol. 152, 569–579 (2007).

    Article 

    Google Scholar 

  • Li, G. & Hedgecock, D. Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci. 55, 1025–1033 (1998).

    CAS 
    Article 

    Google Scholar 

  • Schmidt, P. S., Phifer-Rixey, M., Taylor, G. M. & Christner, J. Genetic heterogeneity among intertidal habitats in the flat periwinkle, Littorina obtusata. Mol. Ecol. 16, 2393–2404 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Reid, K. et al. Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the Benguela upwelling zone. Heredity 117, 307–315 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hu, Z.-M., Zhang, J., Lopez-Bautista, J. & Duan, D.-L. Asymmetric genetic exchange in the brown seaweed Sargassum fusiforme (Phaeophyceae) driven by oceanic currents. Mar. Biol. 160, 1407–1414 (2013).

    Article 

    Google Scholar 

  • Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Becker, R. A. & Wilks, A. R. R version by Ray Brownrigg. mapdata: Extra Map Databases. R package version 2.3.0. (2018b).

  • Becker, R.A. & Wilks, A. R. R version by Ray Brownrigg. Enhancements by TP Minka and A Deckmyn.maps: Draw Geographical Maps. R package version 3.3.0. https://CRAN.R-project.org/package=maps (2018a).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022).

    Google Scholar 

  • Grube, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).

    Article 

    Google Scholar 

  • Foll, M. & Gaggiotti, O. E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Flanagan, S. P. & Jones, A. G. Constraints on the Fst-heterozygosity outlier approach. J. Hered 108, 561–573 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodohl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4, 782–788 (2013).

    Article 

    Google Scholar 

  • Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, Logiciel sous Windows pour la Genetique des Populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000 (Université de Montpellier II, Montpellier, France, 2000).

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pritchard, J. K., Wen, X. & Falush, D. Documentation for Structure Software: Version 2.3. University of Oxford http://pritch.bsd.uchicago.edu/structure.html (2010).

  • Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. U.S.A. 98, 4563–4568 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 

  • Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    From bridges to DNA: civil engineering across disciplines

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia