in

Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts

  • Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl. Environ. Microbiol. 85(15), e00735-e819 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Belnap, J. & Gardner, J. S. Soil microstructure in soils of the colorado plateau—The role of the cyanobacterium Microcoleus-vaginatus. Gt. Basin Nat. 53(1), 40–47 (1993).

    Google Scholar 

  • Belnap, J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 241–261 (2001).

    Google Scholar 

  • Cameron, R. E. & Blank, G. B. Desert algae: Soil crusts and diaphanous substrata as algal habitats. Tech. Rep. Jet Propul. Lab. Calif. Technol. 32–971, 1–41 (1966).

    Google Scholar 

  • Friedmann EI, Galun M. Desert algae lichens and fungi. in Desert Biology (Brown Jr, G.W. eds). Vol. 2. 165–212. (Illus Academic Press, Inc., 1974).

  • Maier, S., Tamm, A., Wu, D.A.-O., Caesar, J., Grube, M., & Weber, B.A.-O. Photoautotrophic Organisms Control Microbial Abundance, Diversity, and Physiology in Different Types of Biological Soil Crusts. (1751–7370 (electronic)).

  • Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141(2), 317–324 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • Evans, R. D. & Johansen, J. R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18(2), 183–225 (1999).

    Google Scholar 

  • Thompson, J. N. et al. Frontiers of ecology. Bioscience 51(1), 15–24 (2001).

    Google Scholar 

  • Warren, S. D., Rosentreter, R. & Pietrasiak, N. Biological soil crusts of the Great Plains: A review. Rangel Ecol. Manag. 1(78), 213–219 (2021).

    Google Scholar 

  • Warren, S. D. et al. Biological soil crust response to late season prescribed fire in a Great Basin Juniper Woodland. Rangel. Ecol. Manag. 68(3), 241–247 (2015).

    Google Scholar 

  • Thomas, A. D., Hoon, S. R. & Linton, P. E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl. Soil Ecol. 39, 254–263 (2008).

    Google Scholar 

  • Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76(5), 1685–1695 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Belnap, J. & Lange, O. L. Ecological studies: Biological soil crusts: Structure, function, and management. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 1–503 (2001).

    Google Scholar 

  • Jordan, W. R. I. Restoration ecology: A synthetic approach to ecological research. Rehabil. Damaged Ecosyst. 2, 373–384 (1995).

    Google Scholar 

  • Nash, T. H. et al. Photosynthetic patterns of Sonoran desert lichens.1. Environmental considerations and preliminary field-measurements. Flora 172(4), 335–345 (1982).

    Google Scholar 

  • St. Clair, L. L., Johansen, J. R. & Rushforth, S. R. Lichens of soil crust communities in the Intermountain Area of the western United States. Gt Basin Nat. 53(1), 5 (1993).

    Google Scholar 

  • Bowker, M. A., Belnap, J. & Miller, M. E. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel. Ecol. Manag. 59(5), 519–529 (2006).

    Google Scholar 

  • Mayland, H. F., McIntosh, T. H. & Fuller, W. H. Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci. Soc. Am. Proc. 30(1), 56 (1966).

    ADS 
    CAS 

    Google Scholar 

  • McIlvanie, S. K. Grass seedling establishment, and productivity—Overgrazed vs. protected range soils. Ecology 23(2), 228–231 (1942).

    Google Scholar 

  • Webb, R. H. & Wilshire, H. G. Environmental Effects of Off-Road Vehicles : Impacts and Management in Arid Regions (Springer, 1983).

    Google Scholar 

  • Zobel, D. & Antos, J. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St. Helens. Ecol. Monogr. 1, 67 (1997).

    Google Scholar 

  • Condon, L. & Pyke, D. Resiliency of biological soil crusts and vascular plants varies among morphogroups with disturbance intensity. Plant Soil. 12, 433 (2020).

    Google Scholar 

  • Harper, K., & Marble, J. A role for nonvascular plants in management of arid and semiarid rangelands. in Vegetation Science Applications for Rangeland Analysis and Management [Internet] (Tueller, P.T., ed.). Handbook of Vegetation Science. Vol. 14. 135–169. https://doi.org/10.1007/978-94-009-3085-8_7. (Springer, 1988).

  • Evans, R. D. & Belnap, J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1), 150–160 (1999).

    Google Scholar 

  • Sheridan, R. P. Impact of emissions from coal-fired electricity generating facilities on N2-fixing lichens. Bryologist 82(1), 54–58 (1979).

    CAS 

    Google Scholar 

  • Henriksson, L. E. & Dasilva, E. J. Effects of some inorganic elements on nitrogen-fixation in blue-green-algae and some ecological aspects of pollution. Z. Allg. Mikrobiol. 18(7), 487–494 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Freebury, C. Lichens and lichenicolous fungi of Grasslands National Park (Saskatchewan, Canada). Opusc Philolichenum 13, 102–121 (2009).

    Google Scholar 

  • Szyja, M. et al. Neglected but potent dry forest players: ecological role and ecosystem service provision of biological soil crusts in the human-modified Caatinga. Front. Ecol. Evol. (Internet). https://doi.org/10.3389/fevo.2019.00482 (2019).

    Article 

    Google Scholar 

  • Rosentreter, R. Biological soil of crusts of North American drylands: Cryptic diversity at risk. in Reference Module in Earth Systems and Environmental Sciences [Internet]. https://www.sciencedirect.com/science/article/pii/B9780128211397000738 (Elsevier, 2021).

  • Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. & Heitman, J. L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 261, 110209 (2020).

    Google Scholar 

  • Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112(18), 5756 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. A distinct urban biogeochemistry?. Trends Ecol. Evol. 21(4), 192–199 (2006).

    PubMed 

    Google Scholar 

  • Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16(4), 642–649 (2008).

    Google Scholar 

  • Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Behzad, H., Mineta, K., & Gojobori, T. Global Ramifications of Dust and Sandstorm Microbiota. (1759–6653 (electronic)).

  • Warren, S., Clair, L. & Leavitt, S. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 3, 35 (2021).

    Google Scholar 

  • Hall, S. J. et al. Urbanization alters soil microbial functioning in the Sonoran Desert. Ecosystems 12(4), 654–671 (2009).

    CAS 

    Google Scholar 

  • Ball, B. A. & Guevara, J. A. The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant Soil. 389(1–2), 225–235 (2015).

    CAS 

    Google Scholar 

  • Allen, C. D. Monitoring environmental impact in the Upper Sonoran lifestyle: A new tool for rapid ecological assessment. Environ. Manag. 43(2), 346–356 (2009).

    ADS 

    Google Scholar 

  • Evans, R. A. & Love, R. M. The step-point method of sampling: A practical tool in range research. J. Range Manag. 10(5), 208–212 (1957).

    Google Scholar 

  • Coulloudon, B., & National Applied Resource Sciences C. Sampling Vegetation Attributes Interagency Technical Reference [Internet]. http://www.blm.gov/nstc/library/pdf/samplveg.pdf. (Bureau of Land Management : National Business Center, 1999).

  • Faithfull, N. T. Methods in agricultural chemical analysis: A practical handbook. Methods Agric. Chem. Anal. Pract. Handb. 1–22, 1–266 (2002).

    Google Scholar 

  • Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6(4), 886–897 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Lorenz, K. & Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 35(1), 1–8 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Chamizo, S., Canton, Y., Lazaro, R., Sole-Benet, A. & Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15(1), 148–161 (2012).

    Google Scholar 

  • Kidron, G. J. & Gutschick, V. P. Soil moisture correlates with shrub-grass association in the Chihuahuan Desert. CATENA 107, 71–79 (2013).

    Google Scholar 

  • Kidron, G. J., Monger, H. C., Vonshak, A. & Conrod, W. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 15(139), 484–494 (2012).

    ADS 

    Google Scholar 

  • Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17, 1242 (2014).

    CAS 

    Google Scholar 

  • Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol. 19, 3835 (2013).

    ADS 

    Google Scholar 

  • Valenzuela, A. et al. Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos. Chem. Phys. 12(21), 10331–10351 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Kaya, S., Basar, U. G., Karaca, M. & Seker, D. Z. Assessment of urban heat islands using remotely sensed data. Ekoloji 21(84), 107–113 (2012).

    Google Scholar 

  • Demmigadams, B. et al. Effect of high light on the efficiency of photochemical energy-conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180(3), 400–409 (1990).

    CAS 

    Google Scholar 

  • Gauslaa, Y. & Rikkinen, J. What’s behind the pretty colours? A study on the photobiology of lichens. Nord. J. Bot. 17(5), 556–556 (1995).

    Google Scholar 

  • Garciapichel, F. & Castenholz, R. W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27(3), 395–409 (1991).

    CAS 

    Google Scholar 

  • Garcia-Pichel, F. & Castenholz, R. W. The role of sheath pigments in the adaptation of terrestrial cyanobacteria to near UV radiation. J. Phycol. 27(3 SUPPL), 24–24 (1991).

    Google Scholar 

  • McDonnell, M. J. et al. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1(1), 21–36 (1997).

    Google Scholar 

  • Pavao-Zuckerman, M. A. & Byrne, L. B. Scratching the surface and digging deeper: Exploring ecological theories in urban soils. Urban Ecosyst. 12(1), 9–20 (2009).

    Google Scholar 

  • Pavao-Zuckerman, M. A. Urban greenscape, soils, and ecosystem functioning in a semi-arid urban ecosystem. J. Nematol. 41(4), 369–370 (2009).

    Google Scholar 

  • Collins, S. L. et al. Pulse dynamics and microbial processes in aridland ecosystems. J. Ecol. 96(3), 413–420 (2008).

    Google Scholar 

  • Noy-Meir, I. Desert ecosystems environment and producers. In Annual Review on Ecology System (Johnston Richard, F. ed.). Vol. 4. 25–51. (Illus Map Annu Rev Inc, 1973).


  • Source: Ecology - nature.com

    Ocean vital signs

    Privately protected areas increase global protected area coverage and connectivity