Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl. Environ. Microbiol. 85(15), e00735-e819 (2019).
Google Scholar
Belnap, J. & Gardner, J. S. Soil microstructure in soils of the colorado plateau—The role of the cyanobacterium Microcoleus-vaginatus. Gt. Basin Nat. 53(1), 40–47 (1993).
Belnap, J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 241–261 (2001).
Cameron, R. E. & Blank, G. B. Desert algae: Soil crusts and diaphanous substrata as algal habitats. Tech. Rep. Jet Propul. Lab. Calif. Technol. 32–971, 1–41 (1966).
Friedmann EI, Galun M. Desert algae lichens and fungi. in Desert Biology (Brown Jr, G.W. eds). Vol. 2. 165–212. (Illus Academic Press, Inc., 1974).
Maier, S., Tamm, A., Wu, D.A.-O., Caesar, J., Grube, M., & Weber, B.A.-O. Photoautotrophic Organisms Control Microbial Abundance, Diversity, and Physiology in Different Types of Biological Soil Crusts. (1751–7370 (electronic)).
Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141(2), 317–324 (2004).
Google Scholar
Evans, R. D. & Johansen, J. R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18(2), 183–225 (1999).
Thompson, J. N. et al. Frontiers of ecology. Bioscience 51(1), 15–24 (2001).
Warren, S. D., Rosentreter, R. & Pietrasiak, N. Biological soil crusts of the Great Plains: A review. Rangel Ecol. Manag. 1(78), 213–219 (2021).
Warren, S. D. et al. Biological soil crust response to late season prescribed fire in a Great Basin Juniper Woodland. Rangel. Ecol. Manag. 68(3), 241–247 (2015).
Thomas, A. D., Hoon, S. R. & Linton, P. E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl. Soil Ecol. 39, 254–263 (2008).
Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76(5), 1685–1695 (2012).
Google Scholar
Belnap, J. & Lange, O. L. Ecological studies: Biological soil crusts: Structure, function, and management. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 1–503 (2001).
Jordan, W. R. I. Restoration ecology: A synthetic approach to ecological research. Rehabil. Damaged Ecosyst. 2, 373–384 (1995).
Nash, T. H. et al. Photosynthetic patterns of Sonoran desert lichens.1. Environmental considerations and preliminary field-measurements. Flora 172(4), 335–345 (1982).
St. Clair, L. L., Johansen, J. R. & Rushforth, S. R. Lichens of soil crust communities in the Intermountain Area of the western United States. Gt Basin Nat. 53(1), 5 (1993).
Bowker, M. A., Belnap, J. & Miller, M. E. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel. Ecol. Manag. 59(5), 519–529 (2006).
Mayland, H. F., McIntosh, T. H. & Fuller, W. H. Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci. Soc. Am. Proc. 30(1), 56 (1966).
Google Scholar
McIlvanie, S. K. Grass seedling establishment, and productivity—Overgrazed vs. protected range soils. Ecology 23(2), 228–231 (1942).
Webb, R. H. & Wilshire, H. G. Environmental Effects of Off-Road Vehicles : Impacts and Management in Arid Regions (Springer, 1983).
Zobel, D. & Antos, J. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St. Helens. Ecol. Monogr. 1, 67 (1997).
Condon, L. & Pyke, D. Resiliency of biological soil crusts and vascular plants varies among morphogroups with disturbance intensity. Plant Soil. 12, 433 (2020).
Harper, K., & Marble, J. A role for nonvascular plants in management of arid and semiarid rangelands. in Vegetation Science Applications for Rangeland Analysis and Management [Internet] (Tueller, P.T., ed.). Handbook of Vegetation Science. Vol. 14. 135–169. https://doi.org/10.1007/978-94-009-3085-8_7. (Springer, 1988).
Evans, R. D. & Belnap, J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1), 150–160 (1999).
Sheridan, R. P. Impact of emissions from coal-fired electricity generating facilities on N2-fixing lichens. Bryologist 82(1), 54–58 (1979).
Google Scholar
Henriksson, L. E. & Dasilva, E. J. Effects of some inorganic elements on nitrogen-fixation in blue-green-algae and some ecological aspects of pollution. Z. Allg. Mikrobiol. 18(7), 487–494 (1978).
Google Scholar
Freebury, C. Lichens and lichenicolous fungi of Grasslands National Park (Saskatchewan, Canada). Opusc Philolichenum 13, 102–121 (2009).
Szyja, M. et al. Neglected but potent dry forest players: ecological role and ecosystem service provision of biological soil crusts in the human-modified Caatinga. Front. Ecol. Evol. (Internet). https://doi.org/10.3389/fevo.2019.00482 (2019).
Google Scholar
Rosentreter, R. Biological soil of crusts of North American drylands: Cryptic diversity at risk. in Reference Module in Earth Systems and Environmental Sciences [Internet]. https://www.sciencedirect.com/science/article/pii/B9780128211397000738 (Elsevier, 2021).
Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. & Heitman, J. L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 261, 110209 (2020).
Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112(18), 5756 (2015).
Google Scholar
Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. A distinct urban biogeochemistry?. Trends Ecol. Evol. 21(4), 192–199 (2006).
Google Scholar
Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16(4), 642–649 (2008).
Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002).
Google Scholar
Behzad, H., Mineta, K., & Gojobori, T. Global Ramifications of Dust and Sandstorm Microbiota. (1759–6653 (electronic)).
Warren, S., Clair, L. & Leavitt, S. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 3, 35 (2021).
Hall, S. J. et al. Urbanization alters soil microbial functioning in the Sonoran Desert. Ecosystems 12(4), 654–671 (2009).
Google Scholar
Ball, B. A. & Guevara, J. A. The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant Soil. 389(1–2), 225–235 (2015).
Google Scholar
Allen, C. D. Monitoring environmental impact in the Upper Sonoran lifestyle: A new tool for rapid ecological assessment. Environ. Manag. 43(2), 346–356 (2009).
Google Scholar
Evans, R. A. & Love, R. M. The step-point method of sampling: A practical tool in range research. J. Range Manag. 10(5), 208–212 (1957).
Coulloudon, B., & National Applied Resource Sciences C. Sampling Vegetation Attributes Interagency Technical Reference [Internet]. http://www.blm.gov/nstc/library/pdf/samplveg.pdf. (Bureau of Land Management : National Business Center, 1999).
Faithfull, N. T. Methods in agricultural chemical analysis: A practical handbook. Methods Agric. Chem. Anal. Pract. Handb. 1–22, 1–266 (2002).
Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6(4), 886–897 (2012).
Google Scholar
Lorenz, K. & Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 35(1), 1–8 (2009).
Google Scholar
Chamizo, S., Canton, Y., Lazaro, R., Sole-Benet, A. & Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15(1), 148–161 (2012).
Kidron, G. J. & Gutschick, V. P. Soil moisture correlates with shrub-grass association in the Chihuahuan Desert. CATENA 107, 71–79 (2013).
Kidron, G. J., Monger, H. C., Vonshak, A. & Conrod, W. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 15(139), 484–494 (2012).
Google Scholar
Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17, 1242 (2014).
Google Scholar
Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol. 19, 3835 (2013).
Google Scholar
Valenzuela, A. et al. Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos. Chem. Phys. 12(21), 10331–10351 (2012).
Google Scholar
Kaya, S., Basar, U. G., Karaca, M. & Seker, D. Z. Assessment of urban heat islands using remotely sensed data. Ekoloji 21(84), 107–113 (2012).
Demmigadams, B. et al. Effect of high light on the efficiency of photochemical energy-conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180(3), 400–409 (1990).
Google Scholar
Gauslaa, Y. & Rikkinen, J. What’s behind the pretty colours? A study on the photobiology of lichens. Nord. J. Bot. 17(5), 556–556 (1995).
Garciapichel, F. & Castenholz, R. W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27(3), 395–409 (1991).
Google Scholar
Garcia-Pichel, F. & Castenholz, R. W. The role of sheath pigments in the adaptation of terrestrial cyanobacteria to near UV radiation. J. Phycol. 27(3 SUPPL), 24–24 (1991).
McDonnell, M. J. et al. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1(1), 21–36 (1997).
Pavao-Zuckerman, M. A. & Byrne, L. B. Scratching the surface and digging deeper: Exploring ecological theories in urban soils. Urban Ecosyst. 12(1), 9–20 (2009).
Pavao-Zuckerman, M. A. Urban greenscape, soils, and ecosystem functioning in a semi-arid urban ecosystem. J. Nematol. 41(4), 369–370 (2009).
Collins, S. L. et al. Pulse dynamics and microbial processes in aridland ecosystems. J. Ecol. 96(3), 413–420 (2008).
Noy-Meir, I. Desert ecosystems environment and producers. In Annual Review on Ecology System (Johnston Richard, F. ed.). Vol. 4. 25–51. (Illus Map Annu Rev Inc, 1973).
Source: Ecology - nature.com