Wiegand, T., Gunatilleke, S. & Gunatilleke, N. Species Associations in a Heterogeneous Sri Lankan Dipterocarp Forest. Am. Nat. 170, E77–E95. https://doi.org/10.1890/06-1350.1 (2007).
Google Scholar
Zhang, J. et al. Spatial patterns and associations of six congeneric species in an old-growth temperate forest. Acta Oecol. 11, 29–38. https://doi.org/10.1016/j.actao.2009.09.005 (2010).
Google Scholar
Pretzsch, H. et al. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 67, 712–712. https://doi.org/10.1051/forest/2010037 (2010).
Google Scholar
Zhu, J., Kang, H., Tan, H., Xu, M. & Wang, J. Natural regeneration characteristics ofPinus sylvestris var.mongolica forests on sandy land in Honghuaerji, China. J. For. Res. 16, 253–259. https://doi.org/10.1007/BF02858184 (2005).
Felton, A., Felton, A. M., Wood, J. & Lindenmayer, D. B. Vegetation structure, phenology, and regeneration in the natural and anthropogenic tree-fall gaps of a reduced-impact logged subtropical Bolivian forest. For. Ecol. Manage. 235, 186–193. https://doi.org/10.1016/j.foreco.2006.08.011 (2006).
Google Scholar
Man, R., Kayahara, G. J., Rice, J. A. & MacDonald, G. B. Eleven-year responses of a boreal mixedwood stand to partial harvesting: Light, vegetation, and regeneration dynamics. For. Ecol. Manage. 255, 697–706. https://doi.org/10.1016/j.foreco.2007.09.043 (2008).
Google Scholar
Xiang, W., Lei, X. & Zhang, X. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. For. Ecol. Manage. 382, 100–109. https://doi.org/10.1016/j.foreco.2016.09.050 (2016).
Google Scholar
Zhang, M., Liu, Y., Guo, W., Kang, X. & Zhao, H. Spatial associations and species collocation of dominant tree spscies in a natural spruce-fir mixed forest of Changbai Mountains in Northeastern China. Appl. Ecol. Env. Res. 17, 6213–6225. https://doi.org/10.15666/aeer/1703_62136225 (2019).
Garbarino, M., Weisberg, P. J. & Motta, R. Interacting effects of physical environment and anthropogenic disturbances on the structure of European larch (Larix decidua Mill.) forests. For. Ecol. Manag. 257, 1794–1802. https://doi.org/10.1016/j.foreco.2008.12.031 (2009).
Gourlet-Fleury, S. et al. Silvicultural disturbance has little impact on tree species diversity in a Central African moist forest. For. Ecol. Manage. 304, 322–332. https://doi.org/10.1016/j.foreco.2013.05.021 (2013).
Google Scholar
Yu, D. & Han, S. Ecosystem service status and changes of degraded natural reserves—A study from the Changbai Mountain Natural Reserve China. Ecosyst. Serv. 20, 56–65. https://doi.org/10.1016/j.ecoser.2016.06.009 (2016).
Google Scholar
Moreau, G. et al. Long-term tree and stand growth dynamics after thinning of various intensities in a temperate mixed forest. For. Ecol. Manage. 473, 118311. https://doi.org/10.1016/j.foreco.2020.118311 (2020).
Google Scholar
Yan, Y., Zhang, C., Wang, Y., Zhao, X. & Gadow, K. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol. Evol. 5, 4287–4299. https://doi.org/10.1002/ece3.1688 (2015).
Google Scholar
Bai, F. et al. Long-term protection effects of national reserve to forest vegetation in 4 decades: Biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve China. Sci. China Ser. C 51, 948–958. https://doi.org/10.1007/s11427-008-0122-9 (2008).
Google Scholar
Liu, Q., Li, X., Ma, Z. & Takeuchi, N. Monitoring forest dynamics using satellite imagery—a case study in the natural reserve of Changbai Mountain in China. For. Ecol. Manage. 210, 25–37. https://doi.org/10.1016/j.foreco.2005.02.025 (2005).
Google Scholar
Hao, H. et al. Patches structure succession based on spatial point pattern features in semi-arid ecosystems of the water-wind erosion crisscross region. Glob. Ecol. Conserv. 12, 158–165. https://doi.org/10.1016/j.gecco.2017.11.001 (2017).
Google Scholar
Das Gupta, S. & Pinno, B. D. Spatial patterns and competition in trees in early successional reclaimed and natural boreal forests. Acta Oecol. 92, 138–147. https://doi.org/10.1016/j.actao.2018.05.003 (2018).
Hao, Z., Zhang, J., Song, B., Ye, J. & Li, B. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. For. Ecol. Manage. 252, 1–11. https://doi.org/10.1016/j.foreco.2007.06.026 (2007).
Google Scholar
Zhao, H., Kang, X., Guo, Z., Yang, H. & Xu, M. Species interactions in spruce-fir mixed stands and implications for enrichment planting in the Changbai Mountains China. Mount. Res. Dev. 32, 187–196. https://doi.org/10.1659/MRD-JOURNAL-D-11-00125.1 (2012).
Google Scholar
Li, Y., Hui, G., Wang, H., Zhang, G. & Ye, S. Selection priority for harvested trees according to stand structural indices. iForest 10, 561–566, DOI: https://doi.org/10.3832/ifor2115-010 (2017).
Zhang, Y., Drobyshev, I., Gao, L., Zhao, X. & Bergeron, Y. Disturbance and regeneration dynamics of a mixed Korean pine dominated forest on Changbai Mountain North-Eastern China. Dendrochronologia 32, 21–31. https://doi.org/10.1016/j.dendro.2013.06.003 (2014).
Google Scholar
Zhang, M. et al. Community stability for spruce-fir forest at different succession stages in Changbai Mountains, Northeast China. Chin. J. Appl. Ecol. 26, 1609–1616. https://doi.org/10.13287/j.1001-9332.20150331.024 (2015).
Gong, Z., Kang, X. & Gu, L. Quantitative division of succession and spatial patterns among different stand developmental stages in Changbai Mountains. J. Mt. Sci. 16, 2063–2078. https://doi.org/10.1007/s11629-018-5142-8 (2019).
Google Scholar
Hu, Y., Min, Z., Gao, Y. & Feng, Q. Effects of selective cutting on stand growth and structure for natural mixed spruce (Picea koraiensis )-Fir (Abies nephrolepis) forests. Scientia Silvae Sinicae 47, 15–24. https://doi.org/10.11707/j.1001-7488.20110203 (2011).
Google Scholar
Hubbell, S. P. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557. https://doi.org/10.1126/science.283.5401.554 (1999).
Seidler, T. G. & Plotkin, J. B. Seed dispersal and spatial pattern in tropical trees. PLoS Biol. 4, e344. https://doi.org/10.1371/journal.pbio.0040344 (2006).
Google Scholar
Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V. K. & Larsen, J. B. Spatial patterns of tree species in Suserup Skov—a semi-natural forest in Denmark. For. Ecol. Manage. 406, 391–401. https://doi.org/10.1016/j.foreco.2017.10.020 (2017).
Google Scholar
Harms, K. E., Wright, S. J., Calderón, O., Hernández, A. & Herre, E. A. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404, 493–495. https://doi.org/10.1038/35006630 (2000).
Google Scholar
Wiegand, T., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N. & Huth, A. How individual species structure diversity in tropical forests. Proc. Natl. Acad. Sci. 104, 19029–19033. https://doi.org/10.1073/pnas.0705621104 (2007).
Google Scholar
Zhang, T., Yan, Q., Wang, J. & Zhu, J. Restoring temperate secondary forests by promoting sprout regeneration: Effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance. For. Ecol. Manage. 429, 267–277. https://doi.org/10.1016/j.foreco.2018.07.025 (2018).
Google Scholar
Zhang, M., Kang, X., Meng, J. & Zhang, L. Distribution patterns and associations of dominant tree species in a mixed coniferous-broadleaf forest in the Changbai Mountains. J. Mt. Sci. 12, 659–670. https://doi.org/10.1007/s11629-013-2795-1 (2015).
Google Scholar
Navarro-Cerrillo, R. M. et al. Structure and spatio-temporal dynamics of cedar forests along a management gradient in the Middle Atlas Morocco. For. Ecol. Manag. 289, 341–353. https://doi.org/10.1016/j.foreco.2012.10.011 (2013).
Google Scholar
Condit, R. Spatial patterns in the distribution of tropical tree species. Science 288, 1414–1418. https://doi.org/10.1126/science.288.5470.1414 (2000).
del Río, M. et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. Eur. J. For. Res. 135, 23–49. https://doi.org/10.1007/s10342-015-0927-6 (2016).
Google Scholar
Wiegand, K., Jeltsch, F. & Ward, D. Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana ?. J. Veg. Sci. 11, 473–484. https://doi.org/10.2307/3246577 (2000).
Google Scholar
Hui, G. & Pommerening, A. Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. For. Ecol. Manage. 316, 125–138. https://doi.org/10.1016/j.foreco.2013.07.029 (2014).
Google Scholar
Graz, F. P. The behaviour of the species mingling index M sp in relation to species dominance and dispersion. Eur. J. For. Res. 123, 87–92. https://doi.org/10.1007/s10342-004-0016-8 (2004).
Google Scholar
Zhang, M. Spatial association and optimum adjacent distribution of trees in a mixed coniferous-broadleaf forest in northeastern China. Appl. Ecol. Environ. Res. 15, 1551–1564. https://doi.org/10.15666/aeer/1503_15511564 (2017).
Hou, J. H., Mi, X. C., Liu, C. R. & Ma, K. P. Spatial patterns and associations in a Quercus-Betula forest in northern China. J. Veg. Sci. 15, 407–414. https://doi.org/10.1111/j.1654-1103.2004.tb02278.x (2004).
Google Scholar
Boyden, S., Binkley, D. & Shepperd, W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. For. Ecol. Manage. 219, 43–55. https://doi.org/10.1016/j.foreco.2005.08.041 (2005).
Google Scholar
Li, J., Niu, S. & Liu, Y. Forest Ecology. Higher Education Press, (2010).
Hui, G. et al. Theory and practice of structure-based forest management. Science Press, (2020).
Gong, Z. et al. Interspecific association among arbor species in two succession stages of spruce-fir conifer and broadleaved mixed forest in Changbai Mountains, northeastern China. J. Beijing For. Univ. 33, 28–33 (2011).
Suzuki, S. N., Kachi, N. & Suzuki, J.-I. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies Forest: Analyses using spatial autocorrelation and the mark correlation function. Ann. Bot. 102, 435–441. https://doi.org/10.1093/aob/mcn113 (2008).
Google Scholar
Shao, G. et al. Integrating stand and landscape decisions for multi-purposes of forest harvesting. For. Ecol. Manage. 207, 233–243. https://doi.org/10.1016/j.foreco.2004.10.029 (2005).
Google Scholar
Dai, L. et al. Changes in forest structure and composition on Changbai Mountain in Northeast China. Ann. For. Sci. 68, 889–897. https://doi.org/10.1007/s13595-011-0095-x (2011).
Google Scholar
Liu, Y. et al. Determining suitable selection cutting intensities based on long-term observations on aboveground forest carbon, growth, and stand structure in Changbai Mountain, Northeast China. Scand. J. For. Res. 29, 436–454. https://doi.org/10.1080/02827581.2014.919352 (2014).
Google Scholar
K. von Gadow and & Hui, G. Y. Characterizing Forest spatial structure and diversity. Proc. of an international workshop organized at the University of Lund, Sweden, 20–30 (2001).
Baddeley, A. & Turner, R. spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 12, 1–42. https://doi.org/10.18637/jss.v012.i06 (2005).
Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns: Illian/Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470725160 (2007).
Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology. Chapman and Hall/CRC. https://doi.org/10.1201/b16195 (2013).
Martínez, I., Wiegand, T., González-Taboada, F. & Obeso, J. R. Spatial associations among tree species in a temperate forest community in North-western Spain. For. Ecol. Manage. 260, 456–465. https://doi.org/10.1016/j.foreco.2010.04.039 (2010).
Google Scholar
Wang, X. et al. Species associations in an old-growth temperate forest in north-eastern China. J. Ecol. 98, 674–686. https://doi.org/10.1111/j.1365-2745.2010.01644.x (2010).
Google Scholar
Getzin, S., Wiegand, T. & Hubbell, S. P. Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proc. R. Soc. B. 281, 20140922. https://doi.org/10.1098/rspb.2014.0922 (2014).
Google Scholar
Nakashizuka, T. Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol. 16, 205–210 (2001).
Google Scholar
Mugglestone, M. & Renshaw, E. Spectral tests of randomness for spatial point patterns. Environ. Ecol. Stat. 237–251. https://doi.org/10.1023/A:1011339607376 (2001).
Stoyan, D. & Stoyan, H. Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley, (1994).
Liu, P. et al. Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China. For. Ecol. Manage. 467, 118167. https://doi.org/10.1016/j.foreco.2020.118167 (2020).
Google Scholar
Wiegand, T., Moloney, A. & Rings, K. circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x (2004).
Google Scholar
Source: Ecology - nature.com