Pienta, K. J., Hammarlund, E. U., Austin, R. H., Axelrod, R., Brown, J. S. & Amend, S. R. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. In Seminars in Cancer Biology, 1–15 (2020).
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 70(1), 7–30 (2020).
Google Scholar
Duesberg, P. & Rasnick, D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskelet. 47(2), 81–107 (2000).
Google Scholar
Hanahan, D. & Weinberg, R. A. Leading edge review hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).
Google Scholar
Amend, S. R. et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).
Google Scholar
Pienta, K. J. et al. Convergent evolution, evolving evolvability, and the origins of lethal cancer. Mol. Cancer Res. 18(6), 801–810 (2020).
Google Scholar
Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol. Appl. 13(7), 1626–1634 (2020).
Google Scholar
Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: A pilot study. Sci. Transl. Med. 3(111), 1–12 (2011).
Google Scholar
Kuczler, M. D., Olseen, A. M., Pienta, K. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 165, 3–7 (2021).
Google Scholar
Brown, R. L. What evolvability really is. Br. J. Philos. Sci.65(3), 549–572 (2014).
Google Scholar
Crother, B. I. & Murray, C. M. Early usage and meaning of evolvability. Ecol. Evol. 9(7), 3784–3793 (2019).
Google Scholar
Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).
Google Scholar
Pigliucci, M. Is evolvability evolvable?. Genetics 9, 75–82 (2008).
Google Scholar
Sniegowski, P. D. & Murphy, H. A. Evolvability. Curr. Biol. 16, R831–R834 (2006).
Google Scholar
Kostecka, L. G., Pienta, K. J. & Amend, S. R. Polyaneuploid cancer cell dormancy: Lessons from evolutionary phyla. Front. Ecol. Evol. 9, 439 (2021).
Google Scholar
Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis–a paradigm of self-renewal in cancer. Cell Biol. Int. 29(12), 1084–1097 (2005).
Google Scholar
Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis–A parasexual somatic reduction division in cancer. Int. J. Hum. Genet. 7(1), 29–48 (2007).
Google Scholar
Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther. 3(2), 207–218 (2004).
Google Scholar
Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat. Commun. 5(1), 1–9 (2014).
Google Scholar
Bukkuri, A. & Brown, J. S. Evolutionary game theory: Darwinian dynamics and the G function approach. MDPI Games 12(4), 1–19 (2021).
Google Scholar
Lopez-Sánchez, L. M. et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE 9(6), e99143 (2014).
Google Scholar
Mittal, K. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer 116(9), 1186–1194 (2017).
Google Scholar
Niu, N., Mercado-Uribe, I. & Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 36(34), 4887–4900 (2017).
Google Scholar
Ogden, A., Rida, P. C. G., Knudsen, B. S., Kucuk, O. & Aneja, R. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 367, 89–92 (2015).
Google Scholar
Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).
Google Scholar
Zhang, S. et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1), 116–128 (2014).
Google Scholar
Lin, K. C. et al. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin. Exp. Metastasis 36(2), 97–108 (2019).
Google Scholar
Lin, K.-C. et al. Epithelial and mesenchymal prostate cancer cell population dynamics on a complex drug landscape. Converg. Sci. Phys. Oncol. 3(4), 045001 (2017).
Google Scholar
Boe, L. Mechanism for induction of adaptive mutations in Escherichia coli. Mol. Microbiol. 4(4), 597–601 (1990).
Google Scholar
Cairns, J. Mutation and cancer: The antecedents to our studies of adaptive mutation. Genetics 148(4), 1433–1440 (1998).
Google Scholar
Hall, B. G. Adaptive mutagenesis: A process that generates almost exclusively beneficial mutations. Genetica 102, 109 (1998).
Google Scholar
Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7(2), 118–126 (1953).
Google Scholar
Waddington, C. H. Genetic assimilation. Adv. Genet. 10, 257–293 (1961).
Google Scholar
Jablonka, E. V. A. & Raz, G. A. L. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84(2), 131–176 (2009).
Google Scholar
Steele, E. J. & Pollard, J. W. Hypothesis: Somatic hypermutation by gene conversion via the error prone DNA(longrightarrow )RNA(longrightarrow )DNA information loop. Mol. Immunol. 24(6), 667–673 (1987).
Google Scholar
Steele, E. J. Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair 45, 1–24 (2016).
Google Scholar
Steele, E. J. Somatic Selection and Adaptive Evolution (Springer, US, 1979).
Steele, E. J., Lindley, R. A. & Blanden, R. V. Lamarck’s Signature (Perseus Books, 1998).
Foster, P. L. Adaptive mutation: Implications for evolution. Bioessays 22, 1067–1074 (2000).
Google Scholar
McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10(1), 13–26 (2012).
Google Scholar
Badyaev, A. V. Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proc. R. Soc. B Biol. Sci. 272, 877–886 (2005).
Google Scholar
Bateman, K. G. The genetic assimilation of four venation phenocopies. J. Genet. 56(3), 443–474 (1959).
Google Scholar
Milkman, R. D. The genetic basis of natural variation. VI. Selection of a crossveinless strain of Drosophila by phenocopying at high temperature. Genetics 51(1), 87 (1965).
Google Scholar
Waddington, C. H. Genetic assimilation of the bithorax phenotype. Evolution 10(1), 1–13 (1956).
Google Scholar
Godoy, O., Saldaña, A., Fuentes, N., Valladares, F. & Gianoli, E. Forests are not immune to plant invasions: Phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biol. Invasions 13(7), 1615–1625 (2011).
Google Scholar
Schlichting, C. D. & Wund, M. A. Phenotypic plasticity and epigenetic marking: An assessment of evidence for genetic accommodation. Evolution 68(3), 656–672 (2014).
Google Scholar
Otaki, J. M., Hiyama, A., Iwata, M. & Kudo, T. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10(1), 1–13 (2010).
Google Scholar
Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19(22), 1932–1936 (2009).
Google Scholar
Losos, J. B., Irschick, D. J. & Schoener, T. W. Adaptation and constraint in the evolution of specialization of Bahamian Anolis lizards. Evolution 48(6), 1786–1798 (1994).
Google Scholar
Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54(1), 301–305 (2000).
Google Scholar
Sword, G. A. Density-dependent warning coloration. Nature 397(6716), 217 (1999).
Google Scholar
Sword, G. A. A role for phenotypic plasticity in the evolution of aposematism. Proc. R. Soc. B Biol. Sci. 269(1501), 1639–1644 (2002).
Google Scholar
Clausen, J. & Hiesey, W. M. The balance between coherence and variation in evolution. Proc. Natl. Acad. Sci. 46(4), 494–506 (1960).
Google Scholar
Gurevitch, J. Variation in leaf dissection and leaf energy budgets among populations of Achillea from an altitudinal gradient. Am. J. Bot. 75(9), 1298–1306 (1988).
Google Scholar
Gurevitch, J. & Schuepp, P. H. Boundary layer properties of highly dissected leaves: An investigation using an electrochemical fluid tunnel. Plant Cell Environ. 13(8), 783–792 (1990).
Google Scholar
Gurevitch, J. Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics 130(2), 385–394 (1992).
Google Scholar
Foster, P. L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42(5), 373–397 (2007).
Google Scholar
Soppa, J. Polyploidy in archaea and bacteria: About desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. Microb. Physiol. 24, 409–419 (2014).
Google Scholar
Bastide, A. & David, A. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis 7(4), 1–13 (2018).
Google Scholar
Cairns, J., Overbaugh, J. & Miller, S. The origin of mutants. Nature 335, 142–145 (1988).
Google Scholar
Foster, P. L. Adaptive mutation: The uses of adversity. Annu. Rev. Microbiol. 47, 467–504. https://doi.org/10.1146/annurev.mi.47.100193.002343 (2003).
Google Scholar
Lenski, R. E. & Mittler, J. E. The directed mutation controversy and neo-Darwinism. Science 259(5092), 188–194 (1993).
Google Scholar
Lenski, R. E. & Sniegowski, P. D. “Adaptive mutation’’: The debate goes on. Science 269, 285–288 (1995).
Google Scholar
Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256(5062), 1416–1419 (1992).
Google Scholar
Pribis, J. P. et al. Gamblers: An antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell 74(4), 785–800 (2019).
Google Scholar
Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10(4), 254–266 (2010).
Google Scholar
Shcherbakov, D. et al. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun. Biol. 2(1), 1–16 (2019).
Google Scholar
Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16(5), 288–304 (2016).
Google Scholar
Alphey, L. S., Crisanti, A., Randazzo, F. & Akbari, O. S. Opinion: Standardizing the definition of gene drive. Proc. Natl. Acad. Sci. USA 117(49), 30864 (2020).
Google Scholar
Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).
Google Scholar
Champer, S. E. et al. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLOS Comput. Biol. 17(12), e1009660 (2021).
Google Scholar
Deredec, A., Burt, A. & Godfray, H. C. J. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179(4), 2013–2026 (2008).
Google Scholar
Heffel, M. G. & Finnigan, G. C. Mathematical modeling of self-contained CRISPR gene drive reversal systems. Sci. Rep. 9(1), 1–10 (2019).
Google Scholar
Leftwich, P. T. et al. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46, 1203–1212 (2018).
Google Scholar
Nijhout, H. F., Kudla, A. M. & Hazelwood, C. C. Genetic assimilation and accommodation: Models and mechanisms. Curr. Top. Dev. Biol. 141, 337–369 (2021).
Google Scholar
Noble, C., Adlam, B., Church, G. M., Esvelt, K. M. & Nowak, M. A. Current CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7, e33423 (2018).
Google Scholar
Novozhilov, A. S., Karev, G. P. & Koonin, E. V. Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22(8), 1721–1732 (2005).
Google Scholar
Pigliucci, M. & Murren, C. J. Perspective: Genetic assimilation and a possible evolutionary paradox: Can macroevolution sometimes be so fast as to pass us by?. Evolution 57, 1455–1464 (2003).
Google Scholar
Hammerstein, P. Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34(5–6), 511–532 (1996).
Google Scholar
Dieckmann, U. Coevolutionary Dynamics of Stochastic Replicator Systems (Central Library of the Research Center Jülich, 1994).
Dieckmann, U., Marrow, P. & Law, R. Evolutionary cycling in predator-prey interactions: population dynamics and the red queen. J. Theor. Biol. 176(1), 91–102 (1995).
Google Scholar
Dieckmann, U. & Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996).
Google Scholar
Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How should we define ‘fitness’ for general ecological scenarios?. Trends Ecol. Evol. 7(6), 198–202 (1992).
Google Scholar
Goldschmidt, R. Some aspects of evolution. Science 78(2033), 539–547 (1933).
Google Scholar
Vincent, T. L., Cohen, Y. & Brown, J. S. Evolution via strategy dynamics. Theor. Popul. Biol. 44(2), 149–176 (1993).
Google Scholar
Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).
Google Scholar
Source: Ecology - nature.com