in

Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon

  • Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).

    Article 

    Google Scholar 

  • Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093 (2019).

    Article 

    Google Scholar 

  • Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sonter, L. J., Barrett, D. J., Soares-filho, B. S. & Moran, C. J. Global demand for steel drives extensive land-use change in Brazil’ s Iron Quadrangle. Glob. Environ. Change 26, 63–72 (2014).

    Article 

    Google Scholar 

  • Siqueira-Gay, J., Soares-Filho, B., Sánchez, L. E., Oviedo, A. & Sonter, L. J. Proposed legislation to mine Brazil’s Indigenous lands will threaten Amazon forests and their valuable ecosystem services. One Earth 3, 356–362 (2020).

    Article 

    Google Scholar 

  • El Bizri, H. R., Macedo, J. C. B. M., Plaglia, A. P. & Morcatty, T. Q. Mining undermining Brazil’s environment. Science 353, 2–3 (2016).

    Article 

    Google Scholar 

  • Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).

    CAS 
    Article 

    Google Scholar 

  • Rudke, A. P. et al. Impact of mining activities on areas of environmental protection in the southwest of the Amazon: a GIS- and remote sensing-based assessment. J. Environ. Manage. 263, 110392 (2020).

    Article 

    Google Scholar 

  • Naughton-Treves, L. & Holland, M. B. Losing ground in protected areas? Science 364, 832–833 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kroner, R. E. G. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).

    Article 
    CAS 

    Google Scholar 

  • Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).

    Article 

    Google Scholar 

  • PADDDtracker.org Data Release Version 2.0 (Conservation International and World Wildlife Fund, 2019); https://doi.org/10.5281/zenodo.3371733

  • Bebbington, A. J., Humphreys, D., Aileen, L., Rogan, J. & Agrawal, S. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).

    CAS 
    Article 

    Google Scholar 

  • Paiva, P. F. P. R. et al. Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodivers. Conserv. 29, 19–38 (2020).

    Article 

    Google Scholar 

  • Boldy, R., Santini, T., Annandale, M., Erskine, P. D. & Sonter, L. J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.12.005 (2020).

  • Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation. J. Environ. Manage. 180, 409–420 (2016).

    Article 

    Google Scholar 

  • Kobayashi, H., Watando, H. & Kakimoto, M. A global extent site-level analysis of land cover and protected area overlap with mining activities as an indicator of biodiversity pressure. J. Clean. Prod. 84, 459–468 (2014).

    Article 

    Google Scholar 

  • Craig, M. D., White, D. A., Stokes, V. L. & Prince, J. Can postmining revegetation create habitat for a threatened mammal? Ecol. Manage. Restor. 18, 149–155 (2017).

    Article 

    Google Scholar 

  • Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

    Article 
    CAS 

    Google Scholar 

  • Siqueira-Gay, J., Sonter, L. J. & Sánchez, L. E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662 (2020).

    Article 

    Google Scholar 

  • Siqueira-Gay, J. & Sánchez, L. E. Keep the Amazon niobium in the ground. Environ. Sci. Policy 111, 1–6 (2020).

    CAS 
    Article 

    Google Scholar 

  • Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).

    Article 

    Google Scholar 

  • Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends Ecol. Evol. 29, 635–644 (2014).

    Article 

    Google Scholar 

  • Whitehead, A. L., Kujala, H. & Wintle, B. A. Dealing with cumulative biodiversity impacts in strategic environmental assessment: a new frontier for conservation planning. Conserv. Lett. 10, 195–204 (2017).

    Article 

    Google Scholar 

  • Jenner, N. Making Mining ‘Forest-Smart’: Executive Summary Report (World Bank, 2019); http://documents.worldbank.org/curated/en/369711560319906622/Making-Mining-Forest-Smart-Executive-Summary-Report

  • Renca: Situação legal dos direitos minerários da reserva nacional do cobre (WWF, 2017).

  • Soares-Filho, B. S., Cerqueira, G. C. & Pennachin, C. L. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Modell. 154, 217–235 (2002).

    Article 

    Google Scholar 

  • Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).

    Article 

    Google Scholar 

  • Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).

    Article 

    Google Scholar 

  • Rorato, A. C. et al. Brazilian Amazon Indigenous peoples threatened by mining bill. Environ. Res. Lett. 15, 1040a3 (2020).

    Article 

    Google Scholar 

  • Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. M. Mining threatens isolated Indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, (2022).

  • Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).

    Article 

    Google Scholar 

  • Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174 (2020).

    CAS 
    Article 

    Google Scholar 

  • Tallis, H., Kennedy, C. M., Ruckelshaus, M., Goldstein, J. & Kiesecker, J. M. Mitigation for one & all: an integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 55, 21–34 (2015).

    Article 

    Google Scholar 

  • Bull, J. W. et al. Quantifying the “avoided” biodiversity impacts associated with economic development. Front. Ecol. Environ. https://doi.org/10.1002/fee.2496 (2022).

  • Gastauer, M. et al. Mine land rehabilitation: modern ecological approaches for more sustainable mining. J. Clean. Prod. 172, 1409–1422 (2018).

    Article 

    Google Scholar 

  • Souza, B. A., Rosa, J. C. S., Siqueira-Gay, J. & Sánchez, L. E. Mitigating impacts on ecosystem services requires more than biodiversity offsets. Land Use Policy 105, 105393 (2021).

    Article 

    Google Scholar 

  • Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).

    Article 

    Google Scholar 

  • Good Practice Handbook: Cumulative Impact Assessment and Management, Guidance for the Private Sector in Emerging Markets (IFC, 2013).

  • Gunn, J. H. & Noble, B. F. Integrating cumulative effects in regional strategic environmental assessment frameworks: lessons from practice. J. Environ. Assess. Policy Manage. 11, 267–290 (2009).

    Article 

    Google Scholar 

  • Ferrante, L. & Fearnside, P. M. The Amazon’ s road to deforestation. Science 20, 20–22 (2020).

    Google Scholar 

  • Runge, C. A., Tulloch, A. I. T., Gordon, A. & Rhodes, J. R. Quantifying the conservation gains from shared access to linear infrastructure. Conserv. Biol. 31, 1428–1438 (2017).

    Article 

    Google Scholar 

  • Kiesecker, J. M., Copeland, H., Pocewicz, A. & McKenney, B. Development by design: blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 8, 261–266 (2010).

    Article 

    Google Scholar 

  • Heiner, M. et al. Moving from reactive to proactive development planning to conserve Indigenous community and biodiversity values. Environ. Impact Assess. Rev. 74, 1–13 (2019).

    Article 

    Google Scholar 

  • Pfaff, A., Robalino, J., Herrera, D. & Sandoval, C. Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS ONE 10, 1–17 (2015).

    Article 
    CAS 

    Google Scholar 

  • Almeida, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5 / TM and MODIS data. Acta Amazon. 46, 291–302 (2008).

    Article 

    Google Scholar 

  • Asner, G. P. & Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 12, 094004 (2016).

    Article 

    Google Scholar 

  • Boham-Carter, G. F. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).

  • Soares-Filho, B., Rodrigues, H. & Follador, M. A hybrid analytical–heuristic method for calibrating land-use change models. Environ. Model. Softw. 43, 80–87 (2013).

    Article 

    Google Scholar 

  • INPE. TerraClass https://www.terraclass.gov.br/geoportal-aml/ (2021).

  • INPE. Slope http://www.dsr.inpe.br/topodata/acesso.php (2020).

  • Ministério do Meio Ambiente (MMA). Conservation units http://mapas.mma.gov.br/i3geo/datadownload.htm (2022).

  • Fundação Nacional do Índio (FUNAI). Indigenous lands http://www.funai.gov.br/index.php/shape (2021).

  • Leite-Filho, A., Soares-filho, B. S., Davis, J. & Rodrigues, H. Dinamica EGO Guidebook (Centro de Sensoriamento Remoto, UFMG, 2020).

  • Serviço Geológico do Brasil. Mineral deposits https://geosgb.cprm.gov.br/ (2020).

  • Soares-Filho, B. et al. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarém-Cuiabá corridor. Glob. Change Biol. 10, 745–764 (2004).

    Article 

    Google Scholar 

  • Centro de Sensoriamento Remoto. Biodiversity https://csr.ufmg.br/amazones/biodiversity/ (2021).

  • Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

  • Pardini, R., de Bueno, A. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).

  • Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803 (2020).

    CAS 
    Article 

    Google Scholar 

  • Cabral, A. I. R., Saito, C., Pereira, H. & Laques, A. E. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).

    Article 

    Google Scholar 

  • Colson, F., Bogaert, J. & Ceulemans, R. Fragmentation in the Legal Amazon, Brazil: can landscape metrics indicate agricultural policy differences? Ecol. Indic. 11, 1467–1471 (2011).

    Article 

    Google Scholar 

  • Monmonier, M. S. Measures of pattern complexity for choroplethic maps. Am. Cartogr. 1, 159–169 (1974).

    Article 

    Google Scholar 

  • Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60, 102007 (2020).

    Article 

    Google Scholar 

  • Soares-Filho, B. et al. Roads, http://maps.csr.ufmg.br/ (2016).


  • Source: Ecology - nature.com

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    New hardware offers faster computation for artificial intelligence, with much less energy