in

Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis

[adace-ad id="91168"]
  • Dauvin, J. C. et al. The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures. Environ. Pollut. 224, 336–351 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Obolewski, K. & Glińska-Lewczuk, K. Connectivity and complexity of coastal lakes as determinants for their restoration-A case study of the southern Baltic Sea. Ecol. Eng. 155, 1700 (2020).

    Article 

    Google Scholar 

  • Dobrowolski, Z. Occurrence of macrobenthos in different littoral habitats of the polymictic Lebsko lake. Ekologia Polska 42, 19–40 (1994).

    Google Scholar 

  • Paturej, E., Gutkowska, A. & Durczak, K. Biodiversity and indicative role of zooplankton in the shallow macrophyte-dominated lake Łuknajno. Pol. J. Nat. Sci. 27, 53–66 (2012).

    Google Scholar 

  • Obolewski, K. et al. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13, 150 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, 179 (2019).

    Google Scholar 

  • Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366, 37–47 (2008).

    Article 

    Google Scholar 

  • Törnroos, A. & Bonsdorff, E. Developing the multitrait concept for functional diversity: Lessons from a system rich in functions but poor in species. Ecol. Appl. 22, 2221–2236 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Baldrighi, E. & Manini, E. Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related?. Mar. Biodivers. 45, 469–488 (2015).

    Article 

    Google Scholar 

  • Belley, R. & Snelgrove, P. V. R. Relative contributions of biodiversity and environment to benthic ecosystem functioning. Front. Mar. Sci. 3, 7598 (2016).

    Article 

    Google Scholar 

  • Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article 

    Google Scholar 

  • Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 689 (2015).

    Google Scholar 

  • Ding, N. et al. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Sci. Total Environ. 574, 288–299 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).

    Article 

    Google Scholar 

  • Llanos, E. N., Saracho Bottero, M. A., Jaubet, M. L., Elías, R. & Garaffo, G. V. Functional diversity in the intertidal macrobenthic community at sewage-affected shores from Southwestern Atlantic. Mar. Pollut. Bull. 157, 7448 (2020).

    Article 
    CAS 

    Google Scholar 

  • Paganelli, D., Marchini, A. & Occhipinti-Ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).

    ADS 
    Article 

    Google Scholar 

  • Nasi, F. et al. Functional biodiversity of marine soft-sediment polychaetes from two Mediterranean coastal areas in relation to environmental stress. Mar. Environ. Res. 137, 121–132 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harwell, M. A. et al. Conceptual framework for assessing ecosystem health. Integr. Environ. Assess. Manag. 15, 544–564 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hu, C. et al. Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon. Environ. Pollut. 253, 1107–1116 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ramsay, K., Kaiser, M. J. & Hughes, R. N. Responses of benthic scavengers to fishing disturbance by towed gears in different habitats. J. Exp. Mar. Biol. Ecol. 224, 4458 (1998).

    Article 

    Google Scholar 

  • Sigala, K., Reizopoulou, S., Basset, A. & Nicolaidou, A. Functional diversity in three Mediterranean transitional water ecosystems. Estuar. Coast. Shelf Sci. 110, 202–209 (2012).

    ADS 
    Article 

    Google Scholar 

  • de Loiola, P. P., Cianciaruso, M. V., Silva, I. A. & Batalha, M. A. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora Morphol. Distrib. Funct. Ecol. Plants 205, 674–681 (2010).

    Article 

    Google Scholar 

  • Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecological Monographs vol. 80 http://www.scopus.com/scopus/search/form.urli (2010).

  • Wan, H. W. M. R., Cooper, K. M., Froján, C. R. S. B., Defew, E. C. & Paterson, D. M. Impacts of physical disturbance on the recovery of a macrofaunal community: A comparative analysis using traditional and novel approaches. Ecol. Indicators 12, 37–45 (2012).

    Article 

    Google Scholar 

  • Millet, B. & Guelorget, O. Spatial and seasonal variability in the relationships between benthic communities and physical environment in a lagoon ecosystem. Mar. Ecol. Prog. Ser. 108, 161–174 (1994).

    ADS 
    Article 

    Google Scholar 

  • McLusky, D. S. & Elliott, M. The Estuarine Ecosystem (Oxford University Press, 2004). https://doi.org/10.1093/acprof:oso/9780198525080.001.0001.

    Book 

    Google Scholar 

  • Mrozińska, N. & Bąkowska, M. Effects of heavy metals in lake water and sediments on bottom invertebrates inhabiting the brackish coastal lake Łebsko on the southern baltic coast. Int. J. Environ. Res. Public Health 17, 1–19 (2020).

    Article 
    CAS 

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 20, 1512–1522 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Dolédec, S. & Statzner, B. Theoretical habitat templets, species traits, and species richness: 548 plant and animal species in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 523–538 (1994).

    Article 

    Google Scholar 

  • Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases?. Hydrobiologia 422, 153–162 (2000).

    Article 

    Google Scholar 

  • Charvet, S., Statzner, B., Usseglio-Polatera, P. & Dumont, B. Traits of benthic macroinvertebrates in semi-natural French streams: An initial application to biomonitoring in Europe. Freshw. Biol. 43, 277–296 (2000).

    Article 

    Google Scholar 

  • Statzner, B., Dolédec, S. & Hugueny, B. Biological trait composition of European stream invertebrate communities: Assessing the effects of various trait filter types. Ecography 27, 470–488 (2004).

    Article 

    Google Scholar 

  • Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: A comparison of approaches. Mar Ecol Prog Ser 254, 5589 (2003).

    Article 

    Google Scholar 

  • Tillin, H., Hiddink, J., Jennings, S. & Kaiser, M. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar. Ecol. Prog. Ser. 318, 31–45 (2006).

    ADS 
    Article 

    Google Scholar 

  • Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boikova, E., Botva, U. & Līcīte, V. Implementation of trophic status index in brackish water quality assessment of baltic coastal waters. Proc. Latv. Acad. Sci. Sect. B 62, 115–119 (2008).

    CAS 

    Google Scholar 

  • Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. Nutrient fluxes and their impact on the phytoplankton in a Shallow Coastal Lake. Polish J. Environ. Stud. 24, 7780 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kruk, C., Devercelli, M. & Huszar, V. L. Reynolds Functional Groups: A trait-based pathway from patterns to predictions. Hydrobiologia 848, 113–129 (2021).

    Article 

    Google Scholar 

  • Trojanowski, J., Trojanowska, C. & Korzeniewski, K. Trophic state of coastal lakes. Polish Arch. Hydrobiol. 38, 23–34 (1975).

    Google Scholar 

  • Astel, A. M., Bigus, K., Obolewski, K. & Glińska-Lewczuk, K. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic. Estuar. Coast. Shelf Sci. 182, 47–59 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Choiński, A. Changes in morphometrics of the coastal lakes. in Hydroecological Determinants of Functioning of Southern Baltic Coastal Lakes (eds. Obolewski, K., Astel, A. & Kujawa, R.) 26–37 (PWN, 2017).

  • Obolewski, K., Glińska-Lewczuk, K., Bąkowska, M., Szymańska, M. & Mrozińska, N. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Sci. Total Environ. 631–632, 951–961 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Szymańska-Walkiewicz, M., Glińska-Lewczuk, K., Burandt, P. & Obolewski, K. Phytoplankton sensitivity to heavy metals in Baltic Coastal Lakes. Int. J. Environ. Res. Public Health 19, 4131 (2022).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mrozińska, N., Glińska-Lewczuk, K. & Obolewski, K. Salinity as a key factor on the benthic fauna diversity in the coastal lakes. Animals 11, 7440 (2021).

    Article 

    Google Scholar 

  • Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Ind. 6, 609–622 (2006).

    Article 

    Google Scholar 

  • Papageorgiou, N., Sigala, K. & Karakassis, I. Changes of macrofaunal functional composition at sedimentary habitats in the vicinity of fish farms. Estuar. Coast. Shelf Sci. 83, 561–568 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lam-Gordillo, O., Baring, R. & Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol Indic 115, 5589 (2020).

    Article 

    Google Scholar 

  • Kołodziejczyk, A. & Koperski, P. Bezkręgowce słodkowodne Polski: klucz do oznaczania oraz podstawy biologii i ekologii makrofauny. (Wydawnictwa Uniwersytetu Warszawskiego, 2000).

  • Wiederholm, Torgny. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1: larvae. (1983).

  • Antsulevich, A. et al. Helcom, 2012. Development of a set of core indicators: Interim report of the HELCOM CORESET project. PART A. Description of the selection process. (2012).

  • Piechocki, A. & Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland. (2016).

  • Zettler, M. L. et al. Biodiversity gradient in the Baltic Sea: A comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 68, 49–57 (2014).

    ADS 
    Article 

    Google Scholar 

  • Palomares, M. L. D. & Pauly, D. SeaLifeBase. https://www.sealifebase.ca/ (2021).

  • MarLIN. BIOTIC-biological traits information catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the UK. http://www.marlin.ac.uk/biotic/ (2006).

  • Horton, T. et al. World Register of Marine Species (WoRMS). https://www.marinespecies.org (2021).

  • Chevene, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).

    Article 

    Google Scholar 

  • Oug, E., Fleddum, A., Rygg, B. & Olsgard, F. Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a fjord ecosystem. J. Exp. Mar. Biol. Ecol. 432–433, 94–105 (2012).

    Article 

    Google Scholar 

  • Egres, A. G., Hatje, V., Miranda, D. A., Gallucci, F. & Barros, F. Functional response of tropical estuarine benthic assemblages to perturbation by Polycyclic Aromatic Hydrocarbons. Ecol. Ind. 96, 229–240 (2019).

    CAS 
    Article 

    Google Scholar 

  • Charvet, S., Kosmala, A. & Statzner, B. Biomonitoring through biological traits of benthic macroinvertebrates: Perspectives for a general tool in stream management. Fundam. Appl. Limnol. 142, 415–432 (1998).

    Article 

    Google Scholar 

  • Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (2006).

  • Dobrowolski, Z. Density, biomass, and distribution of benthic invertebrates in the mid-lake zone of the coastal Lake Gardno. Oceanol. Stud. 30, 39–58 (2001).

    Google Scholar 

  • Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B. & Stora, G. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J. Exp. Mar. Biol. Ecol. 337, 178–189 (2006).

    CAS 
    Article 

    Google Scholar 

  • Taurusman, A. A. Community structure of macrozoobenthic feeding guilds in responses to eutrophication in Jakarta Bay. Biodivers. J. Biol. Divers. 11, 998 (2010).

    Article 

    Google Scholar 

  • Uwadiae, R. E. Macroinvertebrates functional feeding groups as indices of biological assessment in a tropical aquatic ecosystem: implications for ecosystem functions. New York Sci. J. 3, 778 (2010).

    Google Scholar 

  • Obolewski, K., Glińska-Lewczuk, K., Sidoruk, M. & Szymańska, M. M. Response of benthic fauna to habitat heterogeneity in a shallow temperate lake. Animals 11, 558 (2021).

    Article 

    Google Scholar 

  • Rhoads, D. C. Organism-sediment relations on the muddy sea floor. in Oceanography and Marine Biology: An Annual Review. vol. 12 263–300 (Aberdeen University Press/Allen & Unwin, 1974).

  • Thrush, S. F., Hewitt, J. E., Gibbs, M., Lundquist, C. & Norkko, A. Functional role of large organisms in intertidal communities: Community effects and ecosystem function. Ecosystems 9, 1029–1040 (2006).

    Article 

    Google Scholar 

  • Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. in ICES Journal of Marine Science vol. 57 1303–1309 (Academic Press, 2000).

  • Bradshaw, C., Veale, L. O. & Brand, A. R. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: A re-analysis of an historical dataset. J. Sea Res. 47, 161–184 (2002).

    ADS 
    Article 

    Google Scholar 

  • Cañedo-Argüelles, M. et al. Can salinity trigger cascade effects on streams? A mesocosm approach. Sci. Total Environ. 540, 3–10 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Herbst, D. B. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk. Wetlands 26, 475–485 (2006).

    Article 

    Google Scholar 

  • Merritt, R. W. et al. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Am. Benthol. Soc. 21, 550 (2002).

    Article 

    Google Scholar 

  • de Roos, A. M., Persson, L. & McCauley, E. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6, 473–487 (2003).

    Article 

    Google Scholar 

  • Reizopoulou, S. & Nicolaidou, A. Index of size distribution (ISD): A method of quality assessment for coastal lagoons. Hydrobiologia 577, 141–149 (2007).

    Article 

    Google Scholar 

  • Basset, A., Pinna, M., Sabetta, L., Barbone, E. & Galuppo, N. Hierarchical scaling of biodiversity in lagoon ecosystems. Trans. Waters Bull. 2, 75–86 (2008).

    Google Scholar 

  • Basset, A. et al. A benthic macroinvertebrate size spectra index for implementing the Water Framework Directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol. Ind. 12, 72–83 (2012).

    Article 

    Google Scholar 

  • Robson, B. J., Barmuta, L. A. & Fairweather, P. G. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar. Freshw. Res. 56, 1–11 (2005).

    Article 

    Google Scholar 

  • Parry, D. M., Kendall, M. A., Rowden, A. A. & Widdicombe, S. Species body size distribution patterns of marine benthic macrofauna assemblages from contrasting sediment types. J. Mar. Biol. Assoc. U.K. 79, 793–801 (1999).

    Article 

    Google Scholar 

  • Netto, S. A., Domingos, A. M. & Kurtz, M. N. Effects of artificial breaching of a temporarily open/closed estuary on benthic macroinvertebrates (Camacho Lagoon, Southern Brazil). Estuaries Coasts 35, 1069–1081 (2012).

    CAS 
    Article 

    Google Scholar 

  • Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Article 

    Google Scholar 

  • Montefalcone, M., Parravicini, V. & Bianchi, C. N. Quantification of Coastal Ecosystem Resilience. in Treatise on Estuarine and Coastal Science 49–70 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-374711-2.01003-2.

  • Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).

    Article 

    Google Scholar 

  • Smee, D. L., Reustle, J. W., Belgrad, B. A. & Pettis, E. L. Storms promote ecosystem resilience by alleviating fishing. Curr. Biol. 30, R869–R870 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gilby, B. L. et al. Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation. Estuar. Coast. Shelf Sci. 199, 132–140 (2017).

    ADS 
    Article 

    Google Scholar 

  • Henderson, C. J. et al. Landscape transformation alters functional diversity in coastal seascapes. Ecography 43, 138–148 (2020).

    Article 

    Google Scholar 

  • Yeager, L. A., Geyer, J. K. & Fodrie, F. J. Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure. J. Anim. Ecol. 88, 1743–1754 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Darr, A., Gogina, M. & Zettler, M. L. Functional changes in benthic communities along a salinity gradient- a western Baltic case study. J. Sea Res. 85, 315–324 (2014).

    ADS 
    Article 

    Google Scholar 

  • Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Agro-pastoralists’ perception of climate change and adaptation in the Qilian Mountains of northwest China

    Best practices for instrumenting honey bees