in

Subalpine woody vegetation in the Eastern Carpathians after release from agropastoral pressure

  • Bolliger, J., Kienast, F. & Zimmermann, N. E. Risk of global warming on montane and subalpine forests in Switzerland—A modeling study. Reg. Environ. Change 1, 99–111 (2000).

    Google Scholar 

  • Bugmann, H. & Pfister, Ch. Impacts of interannual climate variability on past and future forest composition. Reg. Environ. Change 1, 112–125 (2000).

    Google Scholar 

  • Becker, A. & Bugmann, H. (eds.) Global change and mountain regions: The Mountain Research Initiative. IHDP Report 13, GTOS Report 28 and IGBP Report 49, Stockholm (2001).

  • Kullman, L. 20th Century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio 30, 72–80. https://doi.org/10.1579/0044-7447-30.2.72 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Körner, Ch. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x (2004).

    Google Scholar 

  • Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 20, 582–596. https://doi.org/10.1111/j.1466-8238.2010.00622.x (2011).

    Google Scholar 

  • Tokarczyk, N. Forest encroachment on temperate mountain meadows: scale, drivers, and current research directions. Geogr. Pol. 90, 463–480 (2017).

    Google Scholar 

  • Vitali, A. et al. Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. For. Ecol. Manag. 435, 28–37. https://doi.org/10.1016/j.foreco.2018.12.039 (2019).

    Google Scholar 

  • Heikkinen, O., Obrębska-Starkel, B. & Tuhkanen, S. Introduction: the timberline—A changing battlefront. Prace Geograficzne UJ 98, 7–16 (1995).

    Google Scholar 

  • Mattson, J. Human impact on the timberline in the far North of Europe. Zeszyty Naukowe UJ, Prace Geogr. 98, 41–56 (1995).

    Google Scholar 

  • Stanisci, A., Lavieri, D., Acosta, A. & Blasi, C. Structure and diversity trends at Fagus timberline in central Italy. Community Ecol. 1, 133–138 (2000).

    Google Scholar 

  • Gehrig-Fasel, J., Guisan, A. & Zimmermann, N. E. Tree line shifts in the Swiss Alps: Climate change or land abandonment?. J. Veg. Sci. 18, 571–582 (2007).

    Google Scholar 

  • Feurdean, A. et al. Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images. Reg. Environ. Change 17, 2193–2207. https://doi.org/10.1007/s10113-016-1063-7 (2017).

    Google Scholar 

  • Burga, C. A., Bührer, S. & Klötzli, F. Mountain ash (Sorbus aucuparia) forests of the Central and Southern Alps (Grisons and Ticino, Switzerland-Prov. Verbano-Cusio-Ossola, N-Italy): Plant ecological and phytosociological aspects. Tuexenia 39, 121–138 (2019).

    Google Scholar 

  • Slayter, R. O. & Noble, I. R. Dynamics of Montane Treelines. In Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 346–359 (Springer-Verlag, 1992).

    Google Scholar 

  • Bryn, A. Recent forest limit changes in south-east Norway: Effects of climate change or regrowth after abandoned utilisation?. Nor. Geogr. Tidsskr. 62(4), 251–270. https://doi.org/10.1080/00291950802517551 (2008).

    Google Scholar 

  • Lu, X., Liang, E., Wang, Y., Babst, F. & Camarero, J. J. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 30(1), 305–315. https://doi.org/10.1111/geb.13214 (2021).

    Google Scholar 

  • Armand, A. D. Sharp and Gradual Mountain Timberlines as Result of species Interaction. Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. In Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 360–377 (Springer-Verlag, 1992).

    Google Scholar 

  • Kucharzyk, S. Ekologiczne znaczenie drzewostanów w strefie górnej granicy lasu w Karpatach Wschodnich i ich wrażliwość na zmiany antropogeniczne [Ecological importance of stands at the upper forest limit in the Eastern Carpathians and their sensibility to anthropogenic changes]. Roczn. Bieszcz. 14, 15–43 (2006) (in Polish with English summary).

    Google Scholar 

  • Surina, B. & Rakaj, M. Subalpine beech forest with Hairy alpenrose (Polysticho lonchitis-Fagetum Rhododendretosum hirsuti subass. nova) on Mt. Snežnik (Liburnian Karst, Dinaric Mts). Hacquetia 6, 195–208 (2007).

    Google Scholar 

  • Kucharzyk, S. Zmiany przebiegu górnej granicy lasu w pasmie Szerokiego Wierchu w Bieszczadzkim Parku Narodowym [Changes of upper forest limit in the Szeroki Wierch range (Bieszczady National Park)]. Roczn. Bieszcz. 12, 81–102 (2004) (in Polish with English summary).

    Google Scholar 

  • Kucharzyk, S. & Augustyn, M. Dynamika górnej granicy lasu w Bieszczadach Zachodnich – zmiany w ciągu półtora wieku [The upper forest limit dynamics in the Western Bieszczady Mts.—Changes over a century and a half]. Stud. Nat. 54, 133–156 (2008) (in Polish with English summary).

    Google Scholar 

  • Kubijowicz, W. Życie pasterskie w Beskidach Wschodnich [La Vie Pastorale dans les Beskides Orientales]. Prace Instytutu Geograficznego UJ 5, 3–30 (1926) (in Polish).

    Google Scholar 

  • Zarzycki, K. Lasy Bieszczadów Zachodnich [The forests of the Western Bieszczady Mts (Polish Eastern Carpathians)]. Acta Agr. et Silv. Ser. Leśna 3, 1–131 (1963) (in Polish with English summary).

    Google Scholar 

  • Augustyn, M. Połoniny w Bieszczadach Zachodnich [Almen im westlichen Bieszczady-Gebirge]. Materiały Muzeum Budownictwa Ludowego w Sanoku 31, 88–98 (1993) (in Polish with German summary).

    Google Scholar 

  • Winnicki, T. Zbiorowiska roślinne połonin Bieszczadzkiego Parku Narodowego (Bieszczady Zachodnie, Karpaty Wschodnie) [Plant communities of subalpine poloninas in the Bieszczady National Park (Western Bieszczady Mts, Eastern Carpathians)]. Monogr. Bieszczadzkie 4, 1–215 (1999) (in Polish with English summary).

    Google Scholar 

  • Mróz, W. Zróżnicowanie szaty roślinnej przy górnej granicy lasu w Bieszczadach Wschodnich i Zachodnich [The diversity of vegetation near the upper timberline in the Eastern and the Western Bieszczady Mts]. Roczn. Bieszcz. 14, 45–62 (2006) (in Polish with English summary).

    Google Scholar 

  • Augustyn, M. & Kucharzyk, S. Górna granica lasu na terenie wsi Ustrzyki Górne i Wołosate w końcu XVIII wieku [Timberline in the Western Bieszczady Mts.]. Roczn. Bieszcz. 20, 15–27 (2012) (in Polish with English summary).

    Google Scholar 

  • Jeník, J. Succession on the Połonina Balds in the Western Bieszczady, the Eastern Carpathians. Tuexenia 3, 207–216 (1983).

    Google Scholar 

  • Michalik, S. & Szary, A. Zbiorowiska leśne Bieszczadzkiego Parku Narodowego [The forest communities of the Bieszczady National Park]. Monogr. Bieszcz. 1, 1–175 (1997).

    Google Scholar 

  • Zemanek, B. & Winnicki, T. Rośliny naczyniowe Bieszczadzkiego Parku Narodowego [Vascular plants of the Bieszczady National Park]. Monogr. Bieszcz. 3, 1–249 (1999) (in Polish with English summary).

    Google Scholar 

  • Kucharzyk, S. & Augustyn, M. Trwałość polan reglowych w Bieszczadzkim Parku Narodowym [Stability of mountain glades in the Bieszczady National Park]. Roczn. Bieszcz. 18, 45–58 (2010) (in Polish with English summary).

    Google Scholar 

  • Durak, T., Żywiec, M. & Ortyl, B. Rozprzestrzenianie się zarośli drzewiastych w piętrze połonin Bieszczad Zachodnich [Expansion of brushwood in the subalpine zone of the Western Bieszczady Mts]. Sylwan 157, 130–138 (2013) (in Polish with English summary).

    Google Scholar 

  • Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Impact of land use and climate changes on expansion of woody species on subalpine meadows in the Eastern Carpathians. For. Ecol. Manag. 339, 127–135. https://doi.org/10.1016/j.foreco.2014.12.014 (2015).

    Google Scholar 

  • Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Rapid spread of a fleshy-fruited species in abandoned subalpine meadows—Formation of an unusual forest belt in the eastern Carpathians. iForest – Biogeosci. For. 9, 337–343. https://doi.org/10.3832/ifor1470-008 (2015).

    Google Scholar 

  • Wężyk, P. & Hawryło, P. Analiza struktury 3D drzewostanów Bieszczadzkiego PN na podstawie danych lotniczego skanowania laserowego oraz ortofotomap lotniczych CIR [3D structure analysis of stands of the Bieszczady National Park on the basis of airborne laser scanning data and CIR aerial ortho-photomaps] (ProGea Consulting, 2015) (in Polish).

  • Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 27, 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x (1995).

    Google Scholar 

  • Scott, L. M. & Janikas, M. V. Spatial Statistics in ArcGIS. In Handbook of Applied Spatial Analysis (eds Fischer, M. M. & Getis, A.) 27–41 (Springer, 2010).

    Google Scholar 

  • Cui, H., Wu, L., Hu, S., Lu, R. & Wang, S. Research on the driving forces of urban hot spots based on exploratory analysis and binary logistic regression model. Trans. GIS 25(3), 1522–1541. https://doi.org/10.1111/tgis.12739 (2021).

    Google Scholar 

  • Pierce, K. B., Lookingbill, T. & Urban, D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landsc. Ecol. 20, 137–147 (2005).

    Google Scholar 

  • Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Int. J. Sc. 5, 23–27 (1999).

    Google Scholar 

  • Böhner, J. & Antonić, O. Land-surface parameters specific to topo-climatology. Geomorphometry – Concepts, Softw. Appl. Dev. Soil Sci. 33, 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1 (2009).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2021).

    Google Scholar 

  • Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley & Sons Inc., 2007).

    MATH 

    Google Scholar 

  • Cottrell, A. Gnu Regression, Econometrics and Time-series Library gretl. http://gretl.sourceforge.net/(2020).

  • Hellevik, O. Linear versus logistic regression when the dependent variable is a dichotomy. Qual. Quant. 43, 59–74 (2009).

    Google Scholar 

  • Azen, R. & Traxel, N. Using dominance analysis to determine predictor importance in logistic regression. J. Educ. Behav. Stat. 34, 319–347. https://doi.org/10.3102/1076998609332754 (2009).

    Google Scholar 

  • Borcard, P., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).

    Google Scholar 

  • Przybylska, K. & Kucharzyk, S. Skład gatunkowy i struktura lasów Bieszczadzkiego Parku Narodowego [Species composition and structure of forest of the Bieszczady National Park. Monogr. Bieszcz. 6, 1–159 (1999) (in Polish with English summary).

    Google Scholar 

  • Bader, M. Y. et al. A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 44(2), 265–292. https://doi.org/10.1111/ecog.05285 (2021).

    Google Scholar 

  • Nowosad, M. Zarys klimatu Bieszczadzkiego Parku Narodowego i jego otuliny w świetle dotychczasowych badań [Outlines of climate of the Bieszczady National Park and its bufferzone in the light of previous studies]. Roczn. Bieszcz. 4, 163–183 (1995) (in Polish with English summary).

    Google Scholar 

  • Nowosad, M. & Wereski, S. Warunki klimatyczne. Bieszczadzki Park Narodowy–40 lat ochrony [Climatic conditions. Bieszczady National Park–40 years of protection]. In Bieszczadzki Park Narodowy [The Bieszczady National Park] (eds Górecki, A. & Zemanek, B.) 31–38 (Wyd. Bieszczadzki Park Narodowy, 2016) (in Polish with English summary).

    Google Scholar 

  • Kukulak, J. Neotectonics and planation surfaces in the High Bieszczady Mountains (Outer Carpathians, Poland). Ann. Soc. Geol. Pol. 74, 339–350 (2004).

    Google Scholar 

  • Haczewski, G., Kukulak, J. & Bąk, K. Budowa geologiczna i rzeźba Bieszczadzkiego Parku Narodowego [Geology and relief of the Bieszczady National Park]. Prace monograficzne (Akademia Pedagogiczna im. Komisji Edukacji Narodowej w Krakowie) 468, 1–156 (2007) (in Polish with English summary).

    Google Scholar 

  • Skiba, S., Drewnik, M., Kacprzak, A. & Kołodziejczyk, M. Gleby litogeniczne Bieszczadów i Beskidu Niskiego [Lithogenous soils of the Bieszczady and Beskid Niski Mts (Polish Carpathians)]. Roczn. Bieszcz. 7, 387–396 (1998) (in Polish with English summary).

    Google Scholar 

  • Skiba, S. & Winnicki, T. Gleby zbiorowisk roślinnych bieszczadzkich połonin [Soils of the subalpine meadows plant communities in the Bieszczady Mts]. Roczn. Bieszcz. 4, 97–109 (1995) (in Polish with English summary).

    Google Scholar 

  • Musielok, Ł, Drewnik, M., Szymański, W. & Stolarczyk, M. Classification of mountain soils in a subalpine zone—A case study from the Bieszczady Mountains (SE Poland). Soil Sci. Annu. 70, 170–177. https://doi.org/10.2478/ssa-2019-0015 (2019).

    CAS 

    Google Scholar 

  • Spatz, G. Succession patterns on mountain pastures. Vegetatio 43, 39–41 (1980).

    Google Scholar 

  • Kozak, J. Zmiany powierzchni lasów w Karpatach Polskich na tle innych gór świata [Changes in the Land Cover in the Polish Carpathians at the Turn of the 20th and 21st Century in Relation to Local Development Level]. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków (2005) (in Polish with English summary).

  • Vitali, A., Urbinati, C., Weisberg, P. J., Urza, A. K. & Garbarino, M. Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J. Veg. Sci. 29(2), 189–199. https://doi.org/10.1111/jvs.12598 (2018).

    Google Scholar 

  • Micu, D. M., Dumitrescu, A., Cheval, S., Nita, I.-A. & Birsan, M.-V. Temperature changes and elevation-warming relationships in the Carpathian Mountains. Int. J. Climatol. 41, 2154–2172. https://doi.org/10.1002/joc.6952 (2020).

    Google Scholar 

  • Rehman, A. Ziemie dawnej Polski. Cz. I. Karpaty [The lands of ancient Poland. Part I. The Carpathians]. (Gubrynowicz i Schmidt, Lwów) (1895) (in Polish).

  • Frey, W. The influence of snow on growth and survival of planted trees. Arct. Alp. Res. 15, 241–251 (1983).

    Google Scholar 

  • Malanson, G. P. et al. Alpine treeline of Western North America: Linking organism-to-landscape dynamics. Phys. Geogr. 28, 378–396. https://doi.org/10.2747/0272-3646.28.5.378 (2007).

    Google Scholar 

  • Holtmeier, F. K. & Broll, G. Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys. Geogr. 31, 203–233. https://doi.org/10.2747/0272-3646.31.3.203 (2010).

    Google Scholar 

  • Barclay, A. M. & Crawford, R. M. M. Winter desiccation stress and resting bud viability in relation to high altitude survival in Sorbus aucuparia L. Flora 172, 21–34 (1982).

    Google Scholar 

  • Raspé, O., Findlay, C. & Jacquemart, A. L. Sorbus aucuparia L. J. Ecol. 88, 910–930 (2000).

    Google Scholar 

  • Zerbe, S. On the ecology of Sorbus aucuparia (Rosaceae) with special regard to germination, establishment and growth. Pol. Bot. J. 46, 229–239 (2001).

    Google Scholar 

  • Smith, W. K., Germino, M. J., Hancock, T. E. & Johnson, D. M. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 23, 1101–1112 (2003).

    PubMed 

    Google Scholar 

  • Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698. https://doi.org/10.1038/s41598-020-66277-2 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbeito, I., Dawes, M. A., Rixen, C., Senn, J. & Bebi, P. Factors driving mortality and growth at treeline: A 30-year experiment of 92 000 conifers. Ecology 93(2), 389–401 (2012).

    PubMed 

    Google Scholar 

  • Kullman, L. A 25-year survey of geoecological change in the scandes mountains of Sweden. Geogr. Ann. Ser. B 79, 139–165 (1997).

    Google Scholar 

  • Pękala, K. Rzeźba Bieszczadzkiego Parku Narodowego [Relief of the Bieszczady National Park]. Roczn. Bieszcz. 6, 19–38 (1997) (in Polish with English summary).

    Google Scholar 

  • Kullman, L. Temporal and spatial aspects of subalpine populations of Sorbus aucuparia in Sweden. Ann. Bot. Fenn. 23, 267–275 (1986).

    Google Scholar 

  • Hoersch, B. Modelling the spatial distribution of montane and subalpine forests in the Central Alps using digital elevation models. Ecol. Model. 168, 267–282 (2003).

    Google Scholar 

  • Resler, L. M., Butler, D. R. & Malanson, G. P. Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Phys. Geogr. 26, 112–125 (2005).

    Google Scholar 

  • Kollmann, J. Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience 2, 213–222 (1995).

    Google Scholar 

  • Lediuk, K. D., Damascos, M. A., Puntieri, J. G. & de Torres Curth, M. I. Population dynamics of an invasive tree, Sorbus aucuparia, in the understory of a Patagonian forest. Plant Ecol. 217, 899–911 (2016).

    Google Scholar 

  • McCutchan, M. H. & Fox, D. G. Effect of elevation and aspect on wind, temperature and humidity. J. Appl. Meteorol. Climatol. 25(12), 1996–2013 (1986).

    ADS 

    Google Scholar 

  • Stage, A. R. & Salas, C. Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For. Sci. 53, 486–492 (2007).

    Google Scholar 

  • Pocewicz, A. L., Gessler, P. & Robinson, A. P. The relationship between effective plant area index and Landsat spectral response across elevation, solar insolation, and spatial scales in a northern Idaho forest. Can. J. For. Res. 34, 465–480 (2004).

    Google Scholar 

  • Kucharzyk, S. & Sugiero, D. Zróżnicowanie dynamiki procesów lasotwórczych w buczynach bieszczadzkich w zależności od wystawy i wzniesienia [Variability of the dynamics of forest development processes in the Bieszczady beech forests in relation to exposition and altitude]. Sylwan 7, 29–38 (2007) (in Polish with English summary).

    Google Scholar 

  • Drewnik, M., Musielok, Ł, Stolarczyk, M., Mitka, J. & Gus, M. Effects of exposure and vegetation type on organic matter stock in the soils of subalpine meadows in the Eastern Carpathians. CATENA 147, 167–176. https://doi.org/10.1016/j.catena.2016.07.014 (2016).

    CAS 

    Google Scholar 

  • Zheng, L. et al. Tree regeneration patterns on contrasting slopes at treeline ecotones in Eastern Tibet. Forests 12, 1605. https://doi.org/10.3390/f12111605 (2021).

    Google Scholar 


  • Source: Ecology - nature.com

    Doubling down on sustainability innovation in Kendall Square

    Simplifying the production of lithium-ion batteries