Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).
Google Scholar
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Google Scholar
Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2017).
Google Scholar
Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. For. Chronicle 69, 187–192 (1993).
Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).
Google Scholar
Higuera, P. E. & Abatzoglou, J. T. Record‐setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27, 1–2 (2021).
Google Scholar
Nolan, R. H. et al. Limits to post-fire vegetation recovery under climate change. Plant Cell Environ. 44, 3471–3489 (2021).
Google Scholar
Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).
Google Scholar
Dickman, C. R. Ecological consequences of Australia’s “Black Summer” bushfires: managing for recovery. Int. Environ. Assess. Manag. 17, 1162–1167 (2021).
Google Scholar
Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).
Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116–126 (2009).
Google Scholar
He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).
Google Scholar
Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr. 19, 145–158 (2010).
Google Scholar
Bowman, D. M., Murphy, B. P., Neyland, D. L., Williamson, G. J. & Prior, L. D. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Glob. Change Biol. 20, 1008–1015 (2014).
Google Scholar
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
Google Scholar
Barrett, K. et al. Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sens. Environ. 237, 111539 (2020).
Google Scholar
Miller, R. G., Fontaine, J. B., Merritt, D. J., Miller, B. P. & Enright, N. J. Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire. Ecol. Appl. 31, e02411 (2021).
Prior, L. D., Williamson, G. J. & Bowman, D. M. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Austral. J. Bot. 64, 193–205 (2016).
Google Scholar
Brewer, J. S. Long-term population changes of a fire-adapted plant subjected to different fire seasons. Nat. Areas J. 26, 267–273 (2006).
Google Scholar
Keith, D. A., Holman, L., Rodoreda, S., Lemmon, J. & Bedward, M. Plant functional types can predict decade‐scale changes in fire‐prone vegetation. J. Ecol. 95, 1324–1337 (2007).
Google Scholar
Savage, M., Mast, J. N. & Feddema, J. J. Double whammy: high-severity fire and drought in ponderosa pine forests of the Southwest. Can. J. For. Res. 43, 570–583 (2013).
Google Scholar
Miller, R. G. et al. Mechanisms of fire seasonality effects on plant populations. Trends Ecol. Evol. 34, 1104–1117 (2019).
Google Scholar
Tangney, R., Merritt, D. J., Fontaine, J. B. & Miller, B. P. Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. J. Ecol. 107, 1093–1105 (2019).
Google Scholar
Tangney, R. et al. Seed dormancy interacts with fire seasonality mechanisms. Trends Ecol. Evol. 35, 1057–1059 (2020).
Google Scholar
Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).
Google Scholar
Knapp, E. E., Estes, B. L. & Skinner, C. N. Ecological effects of prescribed fire season: a literature review and synthesis for managers. Gen. Tech. Rep. https://doi.org/10.2737/PSW-GTR-224 (2009).
Miller, R. G. et al. Fire seasonality mechanisms are fundamental for understanding broader fire regime effects. Trends Ecol. Evol. 35, 869–871 (2020).
Google Scholar
Keeley, J. E. & Syphard, A. D. Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecol. 15, 24 (2019).
Google Scholar
Lamont, B. B., Enright, N. J. & He, T. Fitness and evolution of resprouters in relation to fire. Plant Ecol. 212, 1945–1957 (2011).
Google Scholar
Pausas, J. G. & Bradstock, R. A. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south‐east Australia. Glob. Ecol. Biogeogr. 16, 330–340 (2007).
Google Scholar
Pausas, J. G. & Keeley, J. E. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 204, 55–65 (2014).
Google Scholar
Fairman, T. A., Bennett, L. T. & Nitschke, C. R. Short-interval wildfires increase likelihood of resprouting failure in fire-tolerant trees. J. Environ. Manag. 231, 59–65 (2019).
Google Scholar
Pyke, G. H. Fire-stimulated flowering: a review and look to the future. Critic. Rev. Plant Sci. 36, 179–189 (2017).
Google Scholar
Zirondi, H. L., Ooi, M. K. J. & Fidelis, A. Fire-triggered flowering is the dominant post-fire strategy in a tropical savanna. J. Veg. Sci. 32, e12995 (2021).
Google Scholar
Howe, H. F. Response of Zizia aurea to seasonal mowing and fire in a restored Prairie. Am. Midl. Nat. 141, 373–380 (1999).
Google Scholar
Thompson, K. Seeds and seed banks. New Phytol. 106, 23–34 (1987).
Google Scholar
Baskin, C. C. & Baskin, J. M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination 2nd edn (Academic Press, 2001).
Alvarado, V. & Bradford, K. J. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25, 1061–1069 (2002).
Google Scholar
Mackenzie, B. D. E., Auld, T. D., Keith, D. A., Hui, F. K. C. & Ooi, M. K. J. The effect of seasonal ambient temperatures on fire-stimulated germination of species with physiological dormancy: a case study using boronia (Rutaceae). PLoS One 11, e0156142 (2016).
Google Scholar
Ooi, M. K. J. Delayed emergence and post-fire recruitment success: effects of seasonal germination, fire season and dormancy type. Austral. J. Bot. 58, 248–256 (2010).
Google Scholar
Bond, W. Fire survival of Cape Proteaceae-influence of fire season and seed predators. Vegetatio 56, 65–74 (1984).
Google Scholar
Keith, D. A., Dunker, B. & Driscoll, D. A. Dispersal: the eighth fire seasonality effect on plants. Trends Ecol. Evol. 35, 305–307 (2020).
Google Scholar
Paroissien, R. & Ooi, M. K. J. Effects of fire season on the reproductive success of the post-fire flowerer Doryanthes excelsa. Environ. Exp. Bot. 192, 104634 (2021).
Google Scholar
Furlaud, J. M., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Bioclimatic drivers of fire severity across the Australian geographical range of giant Eucalyptus forests. J. Ecol. 109, 2514–2536 (2021).
Google Scholar
Thomsen, A. M. & Ooi, M. K. J. Shifting season of fire and its interaction with fire severity: Impacts on reproductive effort in resprouting plants. Ecol. Evol. 12, e8717 (2022).
Google Scholar
Fill, J. M. & Crandall, R. M. Stronger evidence needed for global fire season effects. Trends Ecol. Evol. 35, 867–868 (2020).
Google Scholar
Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).
Google Scholar
Inouye, D. W. Climate change and phenology. Wiley Interdiscip. Rev. Clim. Change n/a, e764 (2022).
Enright, N. J., Marsula, R., Lamont, B. B. & Wissel, C. The ecological significance of canopy seed storage in fire-prone environments: a model for non-sprouting shrubs. J. Ecol. 86, 946–959 (1998).
Google Scholar
Setterfield, S. A. The impact of experimental fire regimes on seed production in two tropical eucalypt species in northern Australia. Austral. J. Ecol. 22, 279–287 (1997).
Google Scholar
Collette, J. C. & Ooi, M. K. J. Evidence for physiological seed dormancy cycling in the woody shrub Asterolasia buxifolia and its ecological significance in fire-prone systems. Plant Biol. 22, 745–749 (2020).
Google Scholar
Setterfield, S. A. Seedling establishment in an Australian tropical savanna: effects of seed supply, soil disturbance and fire. J. Appl. Ecol. 39, 949–959 (2002).
Google Scholar
Russell-Smith, J. & Edwards, A. C. Seasonality and fire severity in savanna landscapes of monsoonal northern Australia. Int. J. Wildland Fire 15, 541–550 (2006).
Google Scholar
Whitehead, P. J., Purdon, P., Russell-Smith, J., Cooke, P. M. & Sutton, S. The management of climate change through prescribed Savanna burning: Emerging contributions of indigenous people in Northern Australia. Public Adm. Dev. 28, 374–385 (2008).
Google Scholar
Prior, L. D., Williams, R. J. & Bowman, D. M. Experimental evidence that fire causes a tree recruitment bottleneck in an Australian tropical savanna. J. Tropical Ecol. 26, 595–603 (2010).
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
Google Scholar
Ferreira, L. N., Vega-Oliveros, D. A., Zhao, L., Cardoso, M. F. & Macau, E. E. N. Global fire season severity analysis and forecasting. Comput. Geosci. 134, 104339 (2020).
Google Scholar
Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).
Google Scholar
Ansley, R. J. & Castellano, M. J. Prickly pear cactus responses to summer and winter fires. Rangel. Ecol. Manag. 60, 244–252 (2007).
Google Scholar
Ansley, R. J., Kramp, B. A. & Jones, D. L. Honey mesquite (Prosopis glandulosa) seedling responses to seasonal timing of fire and fireline intensity. Rangel. Ecol. Manag. 68, 194–203 (2015).
Google Scholar
Armstrong, G. & Legge, S. The post-fire response of an obligate seeding Triodia species (Poaceae) in the fire-prone Kimberley, north-west Australia. Int. J. Wildland Fire 20, 974–981 (2012).
Google Scholar
Bellows, R. S., Thomson, A. C., Helmstedt, K. J., York, R. A. & Potts, M. D. Damage and mortality patterns in young mixed conifer plantations following prescribed fires in the Sierra Nevada, California. For. Ecol. Manag. 376, 193–204 (2016).
Google Scholar
Beyers, J. L. & Wakeman, C. D. Season of burn effects in southern California chaparral. In Second interface between ecology and land development in California 45–55 (Occidental College, CA, 2000).
Bowen, B. J. & Pate, J. S. Effect of season of burn on shoot recovery and post‐fire flowering performance in the resprouter Stirlingia latifolia R. Br.(Proteaceae). Austral Ecol. 29, 145–155 (2004).
Google Scholar
Casals, P., Valor, T., Rios, A. & Shipley, B. Leaf and bark functional traits predict resprouting strategies of understory woody species after prescribed fires. For. Ecol. Manag. 429, 158–174 (2018).
Google Scholar
Céspedes, B., Torres, I., Luna, B., Pérez, B. & Moreno, J. M. Soil seed bank, fire season, and temporal patterns of germination in a seeder-dominated Mediterranean shrubland. Plant Ecol. 213, 383–393 (2012).
Google Scholar
Clabo, D. C. & Clatterbuck, W. K. Shortleaf pine (Pinus echinata, Pinaceae) seedling sprouting responses: Clipping and burning effects at various seedling ages and seasons. J. Torrey Bot. Soc. 146, 96–110 (2019).
Google Scholar
Drewa, P. B. Effects of fire season and intensity on Prosopis glandulosa Torr. var. glandulosa. Int. J. Wildland Fire 12, 147–157 (2003).
Google Scholar
Drewa, P. B., Platt, W. J. & Moser, E. B. Fire effects on resprouting of shrubs in headwaters of southeastern longleaf pine savannas. Ecology 83, 755–767 (2002).
Google Scholar
Drewa, P. B., Thaxton, J. M. & Platt, W. J. Responses of root‐crown bearing shrubs to differences in fire regimes in Pinus palustris (longleaf pine) savannas: exploring old‐growth questions in second‐growth systems. Appl. Veg. Sci. 9, 27–36 (2006).
Ellsworth, L. M. & Kauffman, J. B. Seedbank responses to spring and fall prescribed fire in mountain big sagebrush ecosystems of differing ecological condition at Lava Beds National Monument, California. J. Arid Environ. 96, 1–8 (2013).
Google Scholar
Fairfax, R. et al. Effects of multiple fires on tree invasion in montane grasslands. Landsc. Ecol. 24, 1363–1373 (2009).
Google Scholar
Fill, J. M., Welch, S. M., Waldron, J. L. & Mousseau, T. A. The reproductive response of an endemic bunchgrass indicates historical timing of a keystone process. Ecosphere 3, 1–12 (2012).
Google Scholar
Grant, C. Post-burn vegetation development of rehabilitated bauxite mines in Western Australia. For. Ecol. Manag. 186, 147–157 (2003).
Google Scholar
Hajny, K. M., Hartnett, D. C. & Wilson, G. W. Rhus glabra response to season and intensity of fire in tallgrass prairie. Int. J. Wildland Fire 20, 709–720 (2011).
Google Scholar
Holmes, P. A comparison of the impacts of winter versus summer burning of slash fuel in alien-invaded fynbos areas in the Western Cape. Southern African For. J. 192, 41–50 (2001).
Google Scholar
Jasinge, N., Huynh, T. & Lawrie, A. Consequences of season of prescribed burning on two spring-flowering terrestrial orchids and their endophytic fungi. Austr. J. Bot. 66, 298–312 (2018).
Google Scholar
Jasinge, N., Huynh, T. & Lawrie, A. Changes in orchid populations and endophytic fungi with rainfall and prescribed burning in Pterostylis revoluta in Victoria, Australia. Ann. Bot. 121, 321–334 (2018).
Google Scholar
Kauffman, J. & Martin, R. Sprouting shrub response to different seasons and fuel consumption levels of prescribed fire in Sierra Nevada mixed conifer ecosystems. For. Sci. 36, 748–764 (1990).
Keyser, T. L., Greenberg, C. H. & McNab, W. H. Season of burn effects on vegetation structure and composition in oak-dominated Appalachian hardwood forests. For. Ecol. Manag. 433, 441–452 (2019).
Google Scholar
Knox, K. & Clarke, P. J. Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands. Oecologia 149, 730–739 (2006).
Google Scholar
Lamont, B. B. & Downes, K. S. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecol. 212, 2111–2125 (2011).
Google Scholar
Lesica, P. & Martin, B. Effects of prescribed fire and season of burn on recruitment of the invasive exotic plant, Potentilla recta, in a semiarid grassland. Restoration Ecol. 11, 516–523 (2003).
Google Scholar
Moreno, J. M. et al. Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 8, 3721–3732 (2011).
Google Scholar
Mulligan, M. K. & Kirkman, L. K. Burning influences on wiregrass (Aristida beyrichiana) restoration plantings: natural seedling recruitment and survival. Restor. Ecol. 10, 334–339 (2002).
Google Scholar
Nield, A. P., Enright, N. J. & Ladd, P. G. Fire-stimulated reproduction in the resprouting, non-serotinous conifer Podocarpus drouynianus (Podocarpaceae): the impact of a changing fire regime. Popul. Ecol. 58, 179–187 (2016).
Google Scholar
Norden, A. H. & Kirkman, L. K. Persistence and prolonged winter dormancy of the federally endangered Schwalbea Americana L.(Scrophulariaceae) following experimental management techniques. Nat. Areas J. 24, 129–134 (2004).
Olson, M. S. & Platt, W. J. Effects of habitat and growing season fires on resprouting of shrubs in longleaf pine savannas. Vegetatio 119, 101–118 (1995).
Google Scholar
Ooi, M. K. The importance of fire season when managing threatened plant species: a long-term case-study of a rare Leucopogon species (Ericaceae). J. Environ. Manag. 236, 17–24 (2019).
Google Scholar
Pavlovic, N. B., Leicht-Young, S. A. & Grundel, R. Short-term effects of burn season on flowering phenology of savanna plants. Plant Ecology 212, 611–625 (2011).
Google Scholar
Payton, I. J. & Pearce, H. G. Fire-Induced Changes to the Vegetation of Tall-Tussock (Chionochloa rigida) Grassland Ecosystems. (Department of Conservation Wellington, New Zealand, 2009).
Peguero, G. & Espelta, J. M. Disturbance intensity and seasonality affect the resprouting ability of the neotropical dry-forest tree Acacia pennatula: do resources stored below-ground matter? J. Tropical Ecol. 28, 539–546 (2011).
Risberg, L. & Granström, A. Exploiting a window in time. Fate of recruiting populations of two rare fire-dependent Geranium species after forest fire. Plant Ecol. 215, 613–624 (2014).
Google Scholar
Rodríguez-Trejo, D. A., Castro-Solis, U. B., Zepeda-Bautista, M. & Carr, R. J. First year survival of Pinus hartwegii following prescribed burns at different intensities and different seasons in central Mexico. Int. J. Wildland Fire 16, 54–62 (2007).
Google Scholar
Russell, M., Vermeire, L., Ganguli, A. & Hendrickson, J. Fire return interval and season of fire alter bud banks. Rangel. Ecol. Manag.72, 542–550 (2019).
Google Scholar
Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of Eucalyptus‐dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
Google Scholar
Schmidt, I. B., Sampaio, A. B. & Borghetti, F. Effects of the season on sexual reproduction and population structure of Heteropterys pteropetala (Adr. Juss.), Malpiguiaceae, in areas of Cerrado sensu stricto submitted to biennial fires. Acta Bot. Brasilica 19, 927–934 (2005).
Google Scholar
Shepherd, B. J., Miller, D. L. & Thetford, M. Fire season effects on flowering characteristics and germination of longleaf pine (Pinus palustris) savanna grasses. Restor. Ecol. 20, 268–276 (2012).
Google Scholar
Spier, L. P. & Snyder, J. R. Effects of wet-and dry-season fires on Jacquemontia curtisii, a south Florida pine forest endemic. Nat. Areas J. 18, 350–357 (1998).
Tsafrir, A. et al. Fire season modifies the perennial plant community composition through a differential effect on obligate seeders in eastern Mediterranean woodlands. Appl. Veg. Sci. 22, 115–126 (2019).
Google Scholar
Vander Yacht, A. L. et al. Vegetation response to canopy disturbance and season of burn during oak woodland and savanna restoration in Tennessee. For. Ecol. Manag. 390, 187–202 (2017).
Google Scholar
Vidaller, C., Dutoit, T., Ramone, H. & Bischoff, A. Fire increases the reproduction of the dominant grass Brachypodium retusum and Mediterranean steppe diversity in a combined burning and grazing experiment. Appl. Veg. Sci. 22, 127–137 (2019).
Google Scholar
Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Soil temperature and depth of legume germination during early and late dry season fires in a tropical eucalypt savanna of north‐eastern Australia. Austral Ecol. 29, 258–263 (2004).
Google Scholar
Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Germinable soil seed banks in a tropical savanna: seasonal dynamics and effects of fire. Austral Ecol. 30, 79–90 (2005).
Google Scholar
Zhao, H. et al. Ecophysiological influences of prescribed burning on wetland plants: a case study in Sanjiang Plain wetlands, northeast China. Fresenius Environ. Bull 20, 2932–2938 (2011).
Google Scholar
Pick, J. L., Nakagawa, S. & Noble, D. W. Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package. Methods in Ecol. Evol. 10, 426–431 (2019).
Google Scholar
Team, R. C. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).
Higgins, J. P. et al. Cochrane Handbook for Systematic Reviews of Interventions. (John Wiley & Sons, 2019).
Lüdecke, D., Lüdecke, M. D. & David, B. W. Package ‘esc’. https://strengejacke.github.io/esc (2017).
Schwarzer, G. meta: An R package for meta-analysis. R news 7, 40–45 (2007).
Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. A basic introduction to fixed‐effect and random‐effects models for meta‐analysis. Res. Synth. Methods 1, 97–111 (2010).
Google Scholar
Harrer, M., Cuijpers, P., Furukawa, T. A. & Ebert, D. D. Doing Meta-Analysis with R: a Hands-on Guide. (Chapman and Hall, 2019).
Wilke, C. O., Wickham, H. & Wilke, M. C. O. Package ‘cowplot’. Streamlined Plot Theme and Plot Annotations for ‘ggplot2 (Cowplot, 2019).
Fill, J. M., Davis, C. N. & Crandall, R. M. Climate change lengthens southeastern USA lightning‐ignited fire seasons. Glob. Change Biol. 25, 3562–3569 (2019).
Google Scholar
Halofsky, J. E., Peterson, D. L. & Harvey, B. J. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 16, 4 (2020).
Google Scholar
Kraaij, T., Cowling, R. M., van Wilgen, B. W., Rikhotso, D. R. & Difford, M. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland. PeerJ 5, e3591 (2017).
Google Scholar
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).
Google Scholar
Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).
Google Scholar
McColl-Gausden, S. C., Bennett, L. T., Duff, T. J., Cawson, J. G. & Penman, T. D. Climatic and edaphic gradients predict variation in wildland fuel hazard in south-eastern Australia. Ecography 43, 443–455 (2020).
Google Scholar
Pausas, J. G. & Keeley, J. E. Evolutionary ecology of resprouting and seeding in fire‐prone ecosystems. New Phytol. 204, 55–65 (2014).
Google Scholar
Lamont, B. B., Maitre, D. C. L., Cowling, R. M. & Enright, N. J. Canopy seed storage in woody plants. Bot. Rev. 57, 277–317 (1991).
Google Scholar
Tangney, R. et al. Data supporting: Success of post-fire plant recovery strategies varies with shifting fire seasonality. Zenodo https://doi.org/10.5061/dryad.7sqv9s4t5 (2022).
Rothstein, H. R., Sutton, A. J. & Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments (John Wiley & Sons, 2006).
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. The extent and consequences of P-hacking in science. PLoS Biol. 13, e1002106 (2015).
Google Scholar
Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
Google Scholar
Simonsohn, U., Nelson, L. D. & Simmons, J. P. P-curve: a key to the file-drawer. J. Exp. Psychol.Gen. 143, 534 (2014).
Google Scholar
Source: Ecology - nature.com