Meghana, M. & Shastri, Y. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Biores. Technol. 303, 122929 (2020).
Google Scholar
Petrescu, D. C., Vermeir, I. & Petrescu-Mag, R. M. Consumer understanding of food quality, healthiness, and environmental impact: a cross-national perspective. IJERPH 17, 169 (2019).
Google Scholar
Kassam, A., Friedrich, T., Shaxson, F. & Pretty, J. The spread of conservation agriculture: justification, sustainability and uptake. Int. J. Agric. Sustain. 7, 292–320 (2009).
Malviya, M. K. et al. Sugarcane microbiome: role in sustainable production. In Microbiomes and Plant Health 225–242 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-819715-8.00007-0.
Google Scholar
Sandhu, H. S., Wratten, S. D. & Cullen, R. Organic agriculture and ecosystem services. Environ. Sci. Policy 13, 1–7 (2010).
Google Scholar
Schipanski, M. E. et al. Balancing multiple objectives in organic feed and forage cropping systems. Agr. Ecosyst. Environ. 239, 219–227 (2017).
Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).
Google Scholar
Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).
Google Scholar
Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
Google Scholar
Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2022).
Google Scholar
Dastogeer, K. M. G., Tumpa, F. H., Sultana, A., Akter, M. A. & Chakraborty, A. Plant microbiome–an account of the factors that shape community composition and diversity. Curr. Plant Biol. 23, 100161 (2020).
Yang, B., Wang, Y. & Qian, P.-Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformat. 17, 135 (2016).
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
Google Scholar
Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7, 85 (2019).
Google Scholar
Praeg, N. & Illmer, P. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci. Rep. 10, 22324 (2020).
Google Scholar
de Souza, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016).
Google Scholar
Tayyab, M. et al. Sugarcane cultivars manipulate rhizosphere bacterial communities’ structure and composition of agriculturally important keystone taxa. 3 Biotech. 12, 32 (2022).
Google Scholar
Tayyab, M. et al. Sugarcane cultivar-dependent changes in assemblage of soil rhizosphere fungal communities in subtropical ecosystem. Environ. Sci. Pollut. Res. 29, 20795–20807 (2022).
Dakora, F. D., Matiru, V. N. & Kanu, A. S. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci. 6, 700 (2015).
Google Scholar
Chapelle, E., Mendes, R., Bakker, P. A. H. & Raaijmakers, J. M. Fungal invasion of the rhizosphere microbiome. ISME J. 10, 265–268 (2016).
Google Scholar
Teheran-Sierra, L. G. et al. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol. Res. 247, 126729 (2021).
Google Scholar
de Carvalho, L. A. L. et al. Farming systems influence the compositional, structural, and functional characteristics of the sugarcane-associated microbiome. Microbiol. Res. 252, 126866 (2021).
Google Scholar
Henneron, L. et al. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 35, 169–181 (2015).
Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
Google Scholar
Tayyab, M. et al. Sugarcane monoculture drives microbial community composition, activity and abundance of agricultural-related microorganisms. Environ. Sci. Pollut. Res. 28, 48080–48096 (2021).
Google Scholar
Pang, Z. et al. Soil Metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community. Front. Microbiol. 12, 627569 (2021).
Google Scholar
Orr, C. H., Stewart, C. J., Leifert, C., Cooper, J. M. & Cummings, S. P. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. J. Appl. Microbiol. 119, 208–214 (2015).
Google Scholar
Brasil. Lei no 10.831, de 23 de dezembro de 2003. Dispõe sobre a agricultura orgânica e dá outras providências. In Publicado no Diário Oficial da União de 24/12/2003 (2003).
Europea, C. Reglamento (CE) no 834/2007 del Consejo, de 28 de junio de 2007, sobre producción y etiquetado de los productos ecológicos y por el que se deroga el Reglamento (CEE) no 2092/91. D. Of. Unión Eur. 20, 1–23 (2007).
Council of the European Union. 889/2008, “Commission Regulation 889/2008/EC of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control”. Off. J. Eur. Union (L) 250, 18–19 (2007).
de Andrade, J. C., Cantarella, H. & Quaggio, J. A. Análise química para avaliação da fertilidade de solos tropicais. (2001).
Donagema, G. K., de Campos, D. B., Calderano, S. B., Teixeira, W. G. & Viana, J. M. Manual de métodos de análise de solo. In Embrapa Solos-Documentos (INFOTECA-E) (2011).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020). at <https://CRAN.R-project.org/package=ggpubr>
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). At <https://www.R-project.org/>
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).
Google Scholar
Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).
Google Scholar
Renaud, G., Stenzel, U., Maricic, T., Wiebe, V. & Kelso, J. deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31, 770–772 (2015).
Google Scholar
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
Google Scholar
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
Google Scholar
Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
Google Scholar
Lahti, L. & Shetty, S. Microbiome R package. (2012).
Oksanen, J. et al. vegan: Community Ecology Package. (2019). At <https://CRAN.R-project.org/package=vegan>
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).
Google Scholar
Douglas, G. M. et al. PICRUSt2: an improved and extensible approach for metagenome inference. Bioinformatics https://doi.org/10.1101/672295 (2019).
Google Scholar
Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).
Google Scholar
Kohl, M., Wiese, S. & Warscheid, B. Cytoscape: software for visualization and analysis of biological networks. In Data Mining in Proteomics (eds Hamacher, M. et al.) 291–303 (Humana Press, Totowa, NJ, 2011). https://doi.org/10.1007/978-1-60761-987-1_18.
Google Scholar
Assenov, Y., Ramírez, F., Schelhorn, S.-E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).
Google Scholar
Shen, Z. et al. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana fusarium wilt disease suppression induced by bio-organic fertilizer application. PLoS One 9, e98420 (2014).
Google Scholar
Yun, Y. et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front. Microbiol. 7, 1955 (2016).
Google Scholar
Wu, Y., Zeng, J., Zhu, Q., Zhang, Z. & Lin, X. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci. Rep. 7, 40093 (2017).
Google Scholar
Li, R. et al. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One 7, e51897 (2012).
Google Scholar
Bill, M., Chidamba, L., Gokul, J. K., Labuschagne, N. & Korsten, L. Bacterial community dynamics and functional profiling of soils from conventional and organic cropping systems. Appl. Soil. Ecol. 157, 103734 (2021).
Xun, W., Shao, J., Shen, Q. & Zhang, R. Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Comput. Struct. Biotechnol. J. 19, 5487–5493 (2021).
Google Scholar
Semenov, M. V., Krasnov, G. S., Semenov, V. M. & van Bruggen, A. Mineral and organic fertilizers distinctly affect fungal communities in the crop rhizosphere. JoF 8, 251 (2022).
Google Scholar
Wang, Z., Li, Y., Li, T., Zhao, D. & Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 197, 104501 (2020).
Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiom. J. 1, 158–168 (2017).
Lazcano, C. et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 11, 3188 (2021).
Google Scholar
Leys, N. M. E. J. et al. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 70, 1944–1955 (2004).
Google Scholar
Yin, C. et al. Role of bacterial communities in the natural suppression of rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl. Environ. Microbiol. 79, 7428–7438 (2013).
Google Scholar
Stewart, A. & Hill, R. Applications of trichoderma in plant growth promotion. In Biotechnology and Biology of Trichoderma 415–428 (Elsevier, 2014). https://doi.org/10.1016/B978-0-444-59576-8.00031-X.
Google Scholar
Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).
Google Scholar
Andargie, M., Congyi, Z., Yun, Y. & Li, J. Identification and evaluation of potential bio-control fungal endophytes against Ustilagonoidea virens on rice plants. World J. Microbiol. Biotechnol. 33, 120 (2017).
Google Scholar
Orrù, L. et al. How tillage and crop rotation change the distribution pattern of fungi. Front. Microbiol. 12, 634325 (2021).
Google Scholar
van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).
Google Scholar
Wang, W. et al. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Sci. Rep. 6, 35046 (2016).
Google Scholar
Silva, T. M. et al. Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz. J. Microbiol. 38, 522–525 (2007).
Laura, M., Snchez-Salinas, E., Gonzlez, E. D. & Luisa, M. Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In Biodegradation – Life of Science (ed. Chamy, R.) (InTech, 2013). https://doi.org/10.5772/56098.
Google Scholar
Upadhyay, L. S. B. & Dutt, A. Microbial detoxification of residual organophosphate pesticides in agricultural practices. In Microbial Biotechnology (eds Patra, J. K. et al.) 225–242 (Springer Singapore, Singapore, 2017). https://doi.org/10.1007/978-981-10-6847-8_10.
Google Scholar
Hassan, Y. I., Lepp, D., He, J. & Zhou, T. Draft genome sequences of Devosia sp. strain 17-2-E-8 and Devosia riboflavina strain IFO13584. Genome Announ. https://doi.org/10.1128/genomeA.00994-14 (2014).
Google Scholar
Talwar, C. et al. Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Sci. Rep. 10, 1151 (2020).
Google Scholar
Li, F., Chen, L., Zhang, J., Yin, J. & Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8, 187 (2017).
Google Scholar
Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. Microbiol. Ecol. https://doi.org/10.1093/femsec/fix006 (2017).
Google Scholar
Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 7, 2064 (2017).
Google Scholar
Wang, H. et al. Eight years of manure fertilization favor copiotrophic traits in paddy soil microbiomes. Eur. J. Soil Biol. 106, 103352 (2021).
Google Scholar
Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).
Lewin, G. R. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70, 235–254 (2016).
Google Scholar
Karanja, E. N. et al. Diversity and structure of prokaryotic communities within organic and conventional farming systems in central highlands of Kenya. PLoS One 15, e0236574 (2020).
Google Scholar
Francioli, D. et al. Mineral versus organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).
Google Scholar
Paungfoo-Lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 5, 8678 (2015).
Google Scholar
Pang, Z. et al. Liming positively modulates microbial community composition and function of sugarcane fields. Agronomy 9, 808 (2019).
Google Scholar
Aira, M., Gómez-Brandón, M., Lazcano, C., Bååth, E. & Domínguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42, 2276–2281 (2010).
Google Scholar
Ma, M. et al. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. MicrobiologyOpen 7, e00597 (2018).
Google Scholar
Bellenger, J. P., Darnajoux, R., Zhang, X. & Kraepiel, A. M. L. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry 149, 53–73 (2020).
Schmidt, J. E. et al. Effects of agricultural management on rhizosphere microbial structure and function in processing tomato plants. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01064-19 (2019).
Google Scholar
Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).
Google Scholar
Lin, Y. et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical Ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microbiol. 84, e01031-e1118 (2018).
Google Scholar
Chu, H. et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl. Environ. Microbiol. 73, 485–491 (2007).
Google Scholar
Xun, W. et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 9, 35 (2021).
Google Scholar
Source: Ecology - nature.com