in

Sugarcane cultivation practices modulate rhizosphere microbial community composition and structure

  • Meghana, M. & Shastri, Y. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Biores. Technol. 303, 122929 (2020).

    CAS 

    Google Scholar 

  • Petrescu, D. C., Vermeir, I. & Petrescu-Mag, R. M. Consumer understanding of food quality, healthiness, and environmental impact: a cross-national perspective. IJERPH 17, 169 (2019).

    PubMed Central 

    Google Scholar 

  • Kassam, A., Friedrich, T., Shaxson, F. & Pretty, J. The spread of conservation agriculture: justification, sustainability and uptake. Int. J. Agric. Sustain. 7, 292–320 (2009).

    Google Scholar 

  • Malviya, M. K. et al. Sugarcane microbiome: role in sustainable production. In Microbiomes and Plant Health 225–242 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-819715-8.00007-0.

    Chapter 

    Google Scholar 

  • Sandhu, H. S., Wratten, S. D. & Cullen, R. Organic agriculture and ecosystem services. Environ. Sci. Policy 13, 1–7 (2010).

    CAS 

    Google Scholar 

  • Schipanski, M. E. et al. Balancing multiple objectives in organic feed and forage cropping systems. Agr. Ecosyst. Environ. 239, 219–227 (2017).

    Google Scholar 

  • Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

    PubMed 

    Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Chialva, M., Lanfranco, L. & Bonfante, P. The plant microbiota: composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135–142 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Dastogeer, K. M. G., Tumpa, F. H., Sultana, A., Akter, M. A. & Chakraborty, A. Plant microbiome–an account of the factors that shape community composition and diversity. Curr. Plant Biol. 23, 100161 (2020).

    Google Scholar 

  • Yang, B., Wang, Y. & Qian, P.-Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformat. 17, 135 (2016).

    Google Scholar 

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7, 85 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Praeg, N. & Illmer, P. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci. Rep. 10, 22324 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Souza, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tayyab, M. et al. Sugarcane cultivars manipulate rhizosphere bacterial communities’ structure and composition of agriculturally important keystone taxa. 3 Biotech. 12, 32 (2022).

    PubMed 

    Google Scholar 

  • Tayyab, M. et al. Sugarcane cultivar-dependent changes in assemblage of soil rhizosphere fungal communities in subtropical ecosystem. Environ. Sci. Pollut. Res. 29, 20795–20807 (2022).

    Google Scholar 

  • Dakora, F. D., Matiru, V. N. & Kanu, A. S. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci. 6, 700 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapelle, E., Mendes, R., Bakker, P. A. H. & Raaijmakers, J. M. Fungal invasion of the rhizosphere microbiome. ISME J. 10, 265–268 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Teheran-Sierra, L. G. et al. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol. Res. 247, 126729 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • de Carvalho, L. A. L. et al. Farming systems influence the compositional, structural, and functional characteristics of the sugarcane-associated microbiome. Microbiol. Res. 252, 126866 (2021).

    PubMed 

    Google Scholar 

  • Henneron, L. et al. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 35, 169–181 (2015).

    Google Scholar 

  • Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).

    PubMed 

    Google Scholar 

  • Tayyab, M. et al. Sugarcane monoculture drives microbial community composition, activity and abundance of agricultural-related microorganisms. Environ. Sci. Pollut. Res. 28, 48080–48096 (2021).

    CAS 

    Google Scholar 

  • Pang, Z. et al. Soil Metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community. Front. Microbiol. 12, 627569 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Orr, C. H., Stewart, C. J., Leifert, C., Cooper, J. M. & Cummings, S. P. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. J. Appl. Microbiol. 119, 208–214 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Brasil. Lei no 10.831, de 23 de dezembro de 2003. Dispõe sobre a agricultura orgânica e dá outras providências. In Publicado no Diário Oficial da União de 24/12/2003 (2003).

  • Europea, C. Reglamento (CE) no 834/2007 del Consejo, de 28 de junio de 2007, sobre producción y etiquetado de los productos ecológicos y por el que se deroga el Reglamento (CEE) no 2092/91. D. Of. Unión Eur. 20, 1–23 (2007).

    Google Scholar 

  • Council of the European Union. 889/2008, “Commission Regulation 889/2008/EC of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control”. Off. J. Eur. Union (L) 250, 18–19 (2007).

    Google Scholar 

  • de Andrade, J. C., Cantarella, H. & Quaggio, J. A. Análise química para avaliação da fertilidade de solos tropicais. (2001).

  • Donagema, G. K., de Campos, D. B., Calderano, S. B., Teixeira, W. G. & Viana, J. M. Manual de métodos de análise de solo. In Embrapa Solos-Documentos (INFOTECA-E) (2011).

  • Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020). at <https://CRAN.R-project.org/package=ggpubr>

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). At <https://www.R-project.org/>

  • Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Renaud, G., Stenzel, U., Maricic, T., Wiebe, V. & Kelso, J. deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31, 770–772 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lahti, L. & Shetty, S. Microbiome R package. (2012).

  • Oksanen, J. et al. vegan: Community Ecology Package. (2019). At <https://CRAN.R-project.org/package=vegan>

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2: an improved and extensible approach for metagenome inference. Bioinformatics https://doi.org/10.1101/672295 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohl, M., Wiese, S. & Warscheid, B. Cytoscape: software for visualization and analysis of biological networks. In Data Mining in Proteomics (eds Hamacher, M. et al.) 291–303 (Humana Press, Totowa, NJ, 2011). https://doi.org/10.1007/978-1-60761-987-1_18.

    Chapter 

    Google Scholar 

  • Assenov, Y., Ramírez, F., Schelhorn, S.-E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Shen, Z. et al. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana fusarium wilt disease suppression induced by bio-organic fertilizer application. PLoS One 9, e98420 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yun, Y. et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front. Microbiol. 7, 1955 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y., Zeng, J., Zhu, Q., Zhang, Z. & Lin, X. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci. Rep. 7, 40093 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, R. et al. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One 7, e51897 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bill, M., Chidamba, L., Gokul, J. K., Labuschagne, N. & Korsten, L. Bacterial community dynamics and functional profiling of soils from conventional and organic cropping systems. Appl. Soil. Ecol. 157, 103734 (2021).

    Google Scholar 

  • Xun, W., Shao, J., Shen, Q. & Zhang, R. Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Comput. Struct. Biotechnol. J. 19, 5487–5493 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semenov, M. V., Krasnov, G. S., Semenov, V. M. & van Bruggen, A. Mineral and organic fertilizers distinctly affect fungal communities in the crop rhizosphere. JoF 8, 251 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z., Li, Y., Li, T., Zhao, D. & Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 197, 104501 (2020).

    Google Scholar 

  • Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiom. J. 1, 158–168 (2017).

    Google Scholar 

  • Lazcano, C. et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 11, 3188 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leys, N. M. E. J. et al. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 70, 1944–1955 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, C. et al. Role of bacterial communities in the natural suppression of rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl. Environ. Microbiol. 79, 7428–7438 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart, A. & Hill, R. Applications of trichoderma in plant growth promotion. In Biotechnology and Biology of Trichoderma 415–428 (Elsevier, 2014). https://doi.org/10.1016/B978-0-444-59576-8.00031-X.

    Chapter 

    Google Scholar 

  • Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).

    CAS 

    Google Scholar 

  • Andargie, M., Congyi, Z., Yun, Y. & Li, J. Identification and evaluation of potential bio-control fungal endophytes against Ustilagonoidea virens on rice plants. World J. Microbiol. Biotechnol. 33, 120 (2017).

    PubMed 

    Google Scholar 

  • Orrù, L. et al. How tillage and crop rotation change the distribution pattern of fungi. Front. Microbiol. 12, 634325 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Sci. Rep. 6, 35046 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silva, T. M. et al. Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz. J. Microbiol. 38, 522–525 (2007).

    Google Scholar 

  • Laura, M., Snchez-Salinas, E., Gonzlez, E. D. & Luisa, M. Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In Biodegradation – Life of Science (ed. Chamy, R.) (InTech, 2013). https://doi.org/10.5772/56098.

    Chapter 

    Google Scholar 

  • Upadhyay, L. S. B. & Dutt, A. Microbial detoxification of residual organophosphate pesticides in agricultural practices. In Microbial Biotechnology (eds Patra, J. K. et al.) 225–242 (Springer Singapore, Singapore, 2017). https://doi.org/10.1007/978-981-10-6847-8_10.

    Chapter 

    Google Scholar 

  • Hassan, Y. I., Lepp, D., He, J. & Zhou, T. Draft genome sequences of Devosia sp. strain 17-2-E-8 and Devosia riboflavina strain IFO13584. Genome Announ. https://doi.org/10.1128/genomeA.00994-14 (2014).

    Article 

    Google Scholar 

  • Talwar, C. et al. Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Sci. Rep. 10, 1151 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, F., Chen, L., Zhang, J., Yin, J. & Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 8, 187 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. Microbiol. Ecol. https://doi.org/10.1093/femsec/fix006 (2017).

    Article 

    Google Scholar 

  • Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 7, 2064 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Eight years of manure fertilization favor copiotrophic traits in paddy soil microbiomes. Eur. J. Soil Biol. 106, 103352 (2021).

    CAS 

    Google Scholar 

  • Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).

    Google Scholar 

  • Lewin, G. R. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70, 235–254 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karanja, E. N. et al. Diversity and structure of prokaryotic communities within organic and conventional farming systems in central highlands of Kenya. PLoS One 15, e0236574 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francioli, D. et al. Mineral versus organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paungfoo-Lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 5, 8678 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pang, Z. et al. Liming positively modulates microbial community composition and function of sugarcane fields. Agronomy 9, 808 (2019).

    CAS 

    Google Scholar 

  • Aira, M., Gómez-Brandón, M., Lazcano, C., Bååth, E. & Domínguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42, 2276–2281 (2010).

    CAS 

    Google Scholar 

  • Ma, M. et al. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. MicrobiologyOpen 7, e00597 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellenger, J. P., Darnajoux, R., Zhang, X. & Kraepiel, A. M. L. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry 149, 53–73 (2020).

    Google Scholar 

  • Schmidt, J. E. et al. Effects of agricultural management on rhizosphere microbial structure and function in processing tomato plants. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01064-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Y. et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical Ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microbiol. 84, e01031-e1118 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, H. et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl. Environ. Microbiol. 73, 485–491 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xun, W. et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 9, 35 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Advancing the energy transition amidst global crises

    MIT PhD students shed light on important water and food research