in

Switches, stability and reversals in the evolutionary history of sexual systems in fish

  • Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl Acad. Sci. 112, 8827–8834 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ah-King, M. & Nylin, S. Sex in an evolutionary perspective: just another reaction norm. Evolut. Biol. 37, 234–246 (2010).

    Article 

    Google Scholar 

  • Leonard, J. L. The evolution of sexual systems in animals. In: Leonard, J.L. (ed.). Transitions between sexual systems: understanding the mechanisms of, and pathways between, dioecy, hermaphroditism and other sexual systems, 1–58 Springer (2019).

  • Weeks, S. C., Benvenuto, C. & Reed, S. K. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46, 449–464 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Goldberg, E. E. et al. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71, 898–912 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Waples, R. S., Mariani, S. & Benvenuto, C. Consequences of sex change for effective population size. Proc. R. Soc. B: Biol. Sci. 285, 20181702 (2018).

    Article 

    Google Scholar 

  • Benvenuto, C. & Weeks, S. C. Hermaphroditism and gonochorism. The Natural History of the Crustacea: Reproductive Biology VI, 197–241 (2020).

    Google Scholar 

  • Mariani, S., Sala-Bozano, M., Chopelet, J. & Benvenuto, C. Spatial and temporal patterns of size-at-sex-change in two exploited coastal fish. Environ. Biol. Fishes 96, 535–541 (2013).

    Article 

    Google Scholar 

  • Käfer, J., Marais, G. A. & Pannell, J. R. On the rarity of dioecy in flowering plants. Mol. Ecol. 26, 1225–1241 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Atz, J. Intersexuality in Fishes. In C.N. Amstrong and A.J. Marshall (eds). Intersexuality in vertebrates including man, 145–232 Academic Press, London (1964).

  • Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Leonard, J. L. Williams’ paradox and the role of phenotypic plasticity in sexual systems. Integr. Comp. Biol. 53, 671–688 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Weeks, S. C. The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia. Evolution 66, 3670–3686 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588–1596 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Bawa, K. S. Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11, 15–39 (1980).

    Article 

    Google Scholar 

  • Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).

    Article 

    Google Scholar 

  • Charlesworth, D. Androdioecy and the evolution of dioecy. Biol. J. Linn. Soc. 22, 333–348 (1984).

    Article 

    Google Scholar 

  • Pannell, J. R. The evolution and maintenance of androdioecy. In: Annual Review of Ecology and Systematics 397–425 (2002).

  • Bull, J. & Charnov, E. On irreversible evolution. Evolution 39, 1149–1155 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barrett, S. C. The evolution of plant reproductive systems: how often are transitions irreversible? Proc. R. Soc. B: Biol. Sci. 280, 20130913 (2013).

    Article 

    Google Scholar 

  • Oyarzún, P. A., Nuñez, J. J., Toro, J. E. & Gardner, J. P. Trioecy in the marine mussel Semimytilus algosus (Mollusca, Bivalvia): stable sex ratios across 22 degrees of a latitudinal gradient. Front. Mar. Sci. 7, 348 (2020).

    Article 

    Google Scholar 

  • Dani, K. & Kodandaramaiah, U. Plant and animal reproductive strategies: lessons from offspring size and number tradeoffs. Front. Ecol. Evol. 5, 38 (2017).

    Article 

    Google Scholar 

  • Avise, J. & Mank, J. Evolutionary perspectives on hermaphroditism in fishes. Sex. Dev. 3, 152–163 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dornburg, A. & Near, T. J. The Emerging phylogenetic perspective on the evolution of Actinopterygian fishes. Annu. Rev. Ecol. Evol. Syst. 52, 427–452 (2021).

    Article 

    Google Scholar 

  • Costa, W. J., Lima, S. M. & Bartolette, R. Androdioecy in Kryptolebias killifish and the evolution of self-fertilizing hermaphroditism. Biol. J. Linn. Soc. 99, 344–349 (2010).

    Article 

    Google Scholar 

  • Costa, W. Colouration, taxonomy and geographical distribution of mangrove killifishes, the Kryptolebias marmoratus species group, in southern Atlantic coastal plains of Brazil (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 27, 183–192 (2016).

    Google Scholar 

  • Powell, M. L., Kavanaugh, S. I. & Sower, S. A. Seasonal concentrations of reproductive steroids in the gonads of the Atlantic hagfish, Myxine glutinosa. J. Exp. Zool. Part A Comp. Exp. Biol. 301, 352–360 (2004).

    Article 
    CAS 

    Google Scholar 

  • Pennell, M. W., Mank, J. E. & Peichel, C. L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 27, 3950–3963 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ghiselin, M. T. The evolution of hermaphroditism among animals. Q. Rev. Biol. 44, 189–208 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eppley, S. M. & Jesson, L. K. Moving to mate: the evolution of separate and combined sexes in multicellular organisms. J. Evol. Biol. 21, 727–736 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Warner, R. R. The adaptive significance of sequential hermaphroditism in animals. Am. Nat. 109, 61–82 (1975).

    Article 

    Google Scholar 

  • Warner, R. R., Robertson, D. R. & Leigh, E. G. Sex change and sexual selection. Science 190, 633–638 (1975).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Charnov, E. L. The Theory of Sex Allocation. Princeton University Press, USA (1982).

  • Policansky, D. Sex change in plants and animals. Annu. Rev. Ecol. Syst. 13, 471–495 (1982).

    Article 

    Google Scholar 

  • Benvenuto, C., Coscia, I., Chopelet, J., Sala-Bozano, M. & Mariani, S. Ecological and evolutionary consequences of alternative sex-change pathways in fish. Sci. Rep. 7, 9084 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Charnov, E. L. Natural selection and sex change in pandalid shrimp: test of a life-history theory. Am. Nat. 113, 715–734 (1979).

    MathSciNet 
    Article 

    Google Scholar 

  • Broquet, T. et al. The size advantage model of sex allocation in the protandrous sex-changer Crepidula fornicata: role of the mating system, sperm storage, and male mobility. Am. Nat. 186, 404–420 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Erisman, B. E., Craig, M. T. & Hastings, P. A. A phylogenetic test of the size-advantage model: evolutionary changes in mating behavior influence the loss of sex change in a fish lineage. Am. Nat. 174, E83–E99 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Buxton, C. D. & Garratt, P. A. Alternative reproductive styles in seabreams (Pisces: Sparidae). Environ. Biol. Fishes 28, 113–124 (1990).

    Article 

    Google Scholar 

  • Shapiro, D. Y. Social behavior, group structure, and the control of sex reversal in hermaphroditic fish. Adv. Study Behav. 10, 43–102 (1979).

    Article 

    Google Scholar 

  • Stearns, S. C. Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. Lond. B: Biol. Sci. 280, 20131339 (2013).

    Google Scholar 

  • Martinez, A. S., Willoughby, J. R. & Christie, M. R. Genetic diversity in fishes is influenced by habitat type and life-history variation. Ecol. Evolution 8, 12022–12031 (2018).

    Article 

    Google Scholar 

  • Harvey, P. H. & Pagel, M. D. The comparative method in evolutionary biology. (Oxford University Press, USA, 1991).

  • Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brandl, S. J. & Bellwood, D. R. Pair-formation in coral reef fishes: an ecological perspective. Oceanogr. Mar. Biol.: Annu. Rev. 52, 1–80 (2014).

    Google Scholar 

  • Fitzpatrick, J. L. Sperm competition and fertilization mode in fishes. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20200074 (2020).

    Article 

    Google Scholar 

  • Parker, G. A. Conceptual developments in sperm competition: a very brief synopsis. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20200061 (2020).

    Article 

    Google Scholar 

  • Warner, R. R. Sex change in fishes: hypotheses, evidence, and objections. Environ. Biol. Fishes 22, 81–90 (1988).

    Article 

    Google Scholar 

  • Molloy, P. P., Goodwin, N. B., Côté, I. M., Reynolds, J. D. & Gage, M. J. Sperm competition and sex change: a comparative analysis across fishes. Evolution 61, 640–652 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Erisman, B. E., Petersen, C. W., Hastings, P. A. & Warner, R. R. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr. Comp. Biol. 53, 736–754 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Sadovy, Y., Colin, P. & Domeier, M. Aggregation and spawning in the tiger grouper, Mycteroperca tigris (Pisces: Serranidae). Copeia 1994, 511–516 (1994).

    Article 

    Google Scholar 

  • Muñoz, R. C. & Warner, R. R. A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size-fecundity skew. Am. Nat. 161, 749–761 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Horne, C. R., Hirst, A. G. & Atkinson, D. Selection for increased male size predicts variation in sexual size dimorphism among fish species. Proc. R. Soc. B: Biol. Sci. 287, 20192640 (2020).

    Article 

    Google Scholar 

  • Parker, G. The evolution of expenditure on testes. J. Zool. 298, 3–19 (2016).

    Article 

    Google Scholar 

  • Stockley, P., Gage, M., Parker, G. & Møller, A. Sperm competition in fishes: the evolution of testis size and ejaculate characteristics. Am. Nat. 149, 933–954 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pla, S., Benvenuto, C., Capellini, I. & Piferrer, F. A phylogenetic comparative analysis on the evolution of sequential hermaphroditism in seabreams (Teleostei: Sparidae). Sci. Rep. 10, 3606 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vrijenhoek, R. C. Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96 (1994).

    Article 

    Google Scholar 

  • Sadovy de Mitcheson, Y. & Liu, M. Functional hermaphroditism in teleosts. Fish. Fish. 9, 1–43 (2008).

    Article 

    Google Scholar 

  • Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Froese, R., Pauly, D. & Editors. FishBase. World Wide Web electronic publication. www.fishbase.org (2018).

  • Moore, W. S. Evolutionary ecology of unisexual fishes. In: Evolutionary genetics of fishes, 329–398 (Springer, 1984).

  • Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Domes, K., Norton, R. A., Maraun, M. & Scheu, S. Re-evolution of sexuality breaks Dollo’s law. Proc. Natl Acad. Sci. 104, 7139–7144 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dollo, L. Les lois de l’évolution. Bull. Soc. Belge Géol. Paléont. Hydrol. 7, 164–166 (1893).

    Google Scholar 

  • King, B. & Lee, M. S. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. Syst. Biol. 64, 532–544 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Uller, T. & Helanterä, H. From the origin of sex-determining factors to the evolution of sex-determining systems. Q. Rev. Biol. 86, 163–180 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Devlin, R. H. & Nagahama, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364 (2002).

    CAS 
    Article 

    Google Scholar 

  • Volff, J.-N., Nanda, I., Schmid, M. & Schartl, M. Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex. Dev. 1, 85–99 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Nagahama, Y., Chakraborty, T., Paul-Prasanth, B., Ohta, K. & Nakamura, M. Sex determination, gonadal sex differentiation and plasticity in vertebrate species. Physiol. Rev. 101, 1237–1308 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Penman, D. J. & Piferrer, F. Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev. Fish. Sci. 16(S1), 16–34 (2008).

    CAS 
    Article 

    Google Scholar 

  • Mank, J. E., Promislow, D. E. L. & Avise, J. C. Evolution of alternative sex-determining mechanisms in teleost fishes. Biol. J. Linn. Soc. 87, 83–93 (2006).

    Article 

    Google Scholar 

  • Galetti, P. M., Aguilar, C. T. & Molina, W. F. An overview of marine fish cytogenetics. Hydrobiologia 420, 55–62 (2000).

    Article 

    Google Scholar 

  • Yoshida, K. et al. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species. PLoS Genet. 10, e1004223 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ross, J. A., Urton, J. R., Boland, J., Shapiro, M. D. & Peichel, C. L. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 5, e1000391 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vicoso, B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution 1–10 (2019).

  • Gamble, T. et al. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296–1309 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pokorná, M. & Kratochvíl, L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 156, 168–183 (2009).

    Article 

    Google Scholar 

  • Furman, B. L. et al. Sex chromosome evolution: sso many exceptions to the rules. Genome Biol. Evol. 12, 750–763 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carvalho, N. D. M. et al. Cytogenetics of Synbranchiformes: a comparative analysis of two Synbranchus Bloch, 1795 species from the Amazon. Genetica 140, 149–158 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Piferrer, F. Epigenetic mechanisms in sex determination and in the evolutionary transitions between sexual systems. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200110 (2021).

    Article 
    CAS 

    Google Scholar 

  • Grant, S. et al. Genetics of sex determination in flowering plants. Dev. Genet. 15, 214–230 (1994).

    Article 

    Google Scholar 

  • Harrington Jr, R. W. How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia 389–432 (1971).

  • Adolfi, M. C., Nakajima, R. T., Nóbrega, R. H. & Schartl, M. Intersex, Hermaphroditism, and gonadal plasticity in vertebrates: Evolution of the Müllerian duct and Amh/Amhr2 signalling. Annual Review of Animal Biosciences (2018).

  • Adkins-Regan, E. Early organizational effects of hormones: an evolutionary perspective. In Adler, N.T. (ed.) Neuroendocrinology of reproduction: physiology and behavior, 159–228 (Springer, USA, 1981).

  • Navara, K. J. The truth about Nemo’s dad: sex-changing behaviors in fishes. In Choosing Sexes 183–212 (Springer, Cham, 2018).

  • Orban, L., Sreenivasan, R. & Olsson, P. E. Long and winding roads: testis differentiation in zebrafish. Mol. Cell. Endocrinol. 312, 35–41 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zohar, Y., Abraham, M. & Gordin, H. The gonadal cycle of the captivity-reared hermaphroditic teleost Sparus aurata (L.) during the first two years of life. Annales de. Biologie Anim. Biochim. Biophys. 18, 877–882 (1978).

    Article 

    Google Scholar 

  • Chang, C.-F. & Yueh, W.-S. Annual cycle of gonadal histology and steroid profiles in the juvenile males and adult females of the protandrous black porgy, Acanthopagrus schlegelii. Aquaculture 91, 179–196 (1990).

    CAS 
    Article 

    Google Scholar 

  • Miura, S., Nakamura, S., Kobayashi, Y., Piferrer, F. & Nakamura, M. Differentiation of ambisexual gonads and immunohistochemical localization of P450 cholesterol side-chain cleavage enzyme during gonadal sex differentiation in the protandrous anemonefish, Amphiprion clarkii. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 149, 29–37 (2008).

    Article 
    CAS 

    Google Scholar 

  • Yamaguchi, S. & Iwasa, Y. Advantage for the sex changer who retains the gonad of the nonfunctional sex. Behav. Ecol. Sociobiol. 71, 39 (2017).

    Article 

    Google Scholar 

  • Munday, P. L., Kuwamura, T. & Kroon, F. J. Bi-directional sex change in marine fishes. In: Cole, K.S. (ed.) Reproduction and sexuality in marine fishes: Patterns and processes. 241–271 (University of California Press, Berkeley, USA, 2010).

  • Uller, T., Feiner, N., Radersma, R., Jackson, I. S. & Rago, A. Developmental plasticity and evolutionary explanations. Evol. Dev. 22, 47–55 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Pla, S., Maynou, F. & Piferrer, F. Hermaphroditism in fish: incidence, distribution and associations with abiotic environmental factors. Rev. Fish. Biol. Fish. 31, 935–955 (2021).

    Article 

    Google Scholar 

  • Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete. Proc. R. Soc. B: Biol. Sci. 255, 37–45 (1994).

    ADS 
    Article 

    Google Scholar 

  • Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology, 263–286 (Springer, 2014).

  • Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).

    CAS 
    Article 

    Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–348 (1997).

    Article 

    Google Scholar 

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R. https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).

  • Schiettekatte, N., Brandl, S. & Casey, J. Fishualize: Color palettes based on fish species. R package v0.2.2 (2021).


  • Source: Ecology - nature.com

    “The world needs your smarts, your skills,” Ngozi Okonjo-Iweala tells MIT’s Class of 2022

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks