in

Sympatric cleptobiotic stingless bees have species-specific cuticular profiles that resemble their hosts

  • Breed, M.D., Cook, C. & Krasnec, M.O. Cleptobiosis in social insects. Psyche 484765 (2012).

  • Sakagami, S., Roubik, D. & Zucchi, R. Ethology of the robber stingless bee, Lestrimelitta limao (Hymenoptera: Apidae). Sociobiology 21, 237–277 (1993).

    Google Scholar 

  • Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Lin. Soc. 99, 206–232 (2010).

    Google Scholar 

  • Roubik, D. W. Ecology and Natural History of Tropical Bees (Cambridge University Press, 1989).

    Google Scholar 

  • Camargo, J. M. F. & Pedro, S. R. M. Meliponini Lepeletier, 1836. in Catalogue of the Bees (Hymenoptera, Apoidea) in the Neotropical Region (ed Moure, J. S.). 272–578. (Sociedade Brasileira de Entomologia, 2007).

  • Nogueira-Neto. P. Behavior problems related to the pillages made by some parasitic stingless bees (Meliponinae, Apidae). in Development and Evolution of Behavior: Essays in Memory of T.C. Schneirla (ed. Aronson, L.R.). 416–434. (W. H. Freeman, 1970).

  • Quezada-Euán, J. J. G. & González-Acereto, J. Notes on the nest habits and host range of cleptobiotic Lestrimelitta niitkib (Ayala 1999) (Hymenoptera: Meliponini) from the Yucatan Peninsula, Mexico. Acta Zool. Mexicana 86, 245–249 (2002).

    Google Scholar 

  • Rech, A. R., Schwade, M. A. & Schwade, M. R. M. Abelhas-sem-ferrão amazônicas defendem meliponarios contra saques de outras abelhas. Acta Amazon. 43, 389–394 (2013).

    Google Scholar 

  • Grüter, C., von Zuben, L. G., Segers, F. H. I. D. & Cunningham, J. P. Warfare in stingless bees. Insect. Soc. 63, 223–236 (2016).

    Google Scholar 

  • Cini, A., Bruschini, C., Poggi, L. & Cervo, R. Fight or fool? Physical strength, instead of sensory deception, matters in host nest invasion by a wasp social parasite. Anim. Behav. 81, 1139–1145 (2011).

    Google Scholar 

  • Quezada-Euán, J. J. G. et al. Does sensory deception matter in eusocial obligate food robber systems? A study of Lestrimelitta and stingless bee hosts. Anim. Behav. 85, 817–823 (2013).

    Google Scholar 

  • van Zweden, J. S. & D’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. In Insect hydrocarbons: biology, biochemistry, and chemical ecology (eds Blomquist, G. J. & Bagnères, A. G.) 222–243 (Cambridge University Press, 2010).

    Google Scholar 

  • Blomquist, G. J. & Bagnères, A. G. Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Cambridge University Press, 2010).

    Google Scholar 

  • Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication: An Interdisciplinary Perspective (eds d’Etorre, P. & Hughes, D. P.) 55–79 (Oxford University Press, 2008).

    Google Scholar 

  • Martin, S. J., Shemilt, S., da S Lima, C. B. & de Carvalho, C. A. L. Are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona spp). J. Chem. Ecol. 43, 1066–1072 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, H. & Carroll, S. B. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37, 822–830 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finck, J., Berdan, E. L., Mayer, F., Ronacher, B. & Geiselhardt, S. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Nat. Sci. Rep. 6, 33695 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Buellesback, J., Vetter, S. G. & Schmitt, T. Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps. Front. Zool. 15, 22 (2018).

    Google Scholar 

  • Medina-Medina, L.A. & Gonzalez-Acereto, J.A. La respuesta defensiva de Scaptotrigona pectoralis como un contundente escudo de protección contra las incursiones de Lestrimelitta niitkib dirigidas a otras especies de abejas sin aguijón. in VI Congreso Iberoamericano de Apicultura. 171–173. (1998).

  • National Institute of Standards and Technology. Mass Spectral Library. (NIST/EPA/NIH, 2011).

  • Tabachnick, B. G. & Fidell, L. S. Using Multivariate Statistics (Harper Collins College, 1996).

    Google Scholar 

  • SAS Institute. SAS/STAT 9.2 User’s Guide. (SAS Institute Cary, 2008).

  • Rasband, W.S. ImageJ. (U.S. National Institutes of Health, 1997–2012).

  • Quezada-Euán, J.J.G., Paxton, R.J., Palmer, K.A., May-Itzá, W.D.J., Tay, W.T. & Oldroyd, B.P. Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie 38, 247–258 (2007).

  • Rohlf, F. J. TPSDIG: Version 2.12. (New York State University, 2008).

  • Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).

    PubMed 

    Google Scholar 

  • Francoy, T.M., Grassi, M.L., Imperatriz-Fonseca, V.L., May-Itzá, W.D.J. & Quezada-Euán, J.J.G. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42, 499–507 (2011).

  • Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurtado-Burillo, M., Ruiz, C., May-Itzá, W.D.J., Quezada-Eúan, J.J.G., & De la Rúa, P. Barcoding stingless bees: Genetic diversity of the economically important genus Scaptotrigona in Mesoamerica. Apidologie 44, 1–10 (2013).

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrigenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294–299 (1994).

    CAS 

    Google Scholar 

  • Packer, L., Sheffield, C.S., Gibbs, J., de Silva, N., Best, L.R. et al. The campaign to barcode the bees of the world: progress, problems and prognosis. in Memorias VI Congreso Mesoamericano Sobre Abejas Nativas, Guatemala. 178–180. (2009).

  • Tamura, K., Stecher, G., & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evolut. https://doi.org/10.1093/molbev/msab120. (2021)

  • Oliveira, F.F.d. & Marchi, P. Três espécies novas de Lestrimelitta Friese (Hymenoptera, Apidae) da Costa Rica, Panamá e Guiana Francesa. Rev. Bras. Entomol. 49, 1–6 (2005).

  • González, V. H. & Griswold, T. L. New species and previously unknown males of neotropical cleptobiotic stingless bees (Hymenoptera, Apidae, Lestrimelitta). Caldasia 34, 227–245 (2012).

    Google Scholar 

  • Marchi, P. & Melo, G.A.R. Revisão taxonômica das espêcies brasileiras do gênero Lestrimelitta Friese (Hymenoptera, Apidae, Meliponina). Rev. Bras. Entomol. 50, 6–30 (2006).

  • Gonzalez, V., Rasmussen, C. & Velasquez, A. Una especie nueva de Lestrimelitta y un cambio de nombre en Lasioglossum (Hymenoptera: Apidae, Halictidae). Rev. Colomb. Entomol. 36, 319–324 (2010).

    Google Scholar 

  • Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (https://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

  • Ayala, R. Revisión de las abejas sin aguijón de México (Hymenoptera: Apidae: Meliponini). Folia Entomol. Mexicana 106, 1–123 (1999).

    Google Scholar 

  • Ruano, F. & Tinaut, A. The assault process of the slave-making ant Rossomyrmex minuchae (Hymenoptera: Formicidae). Sociobiology 43, 201–209 (2004).

    Google Scholar 

  • Errard, C. et al. Coevolution-driven cuticular hydrocarbon variation between the slave-making ant Rossomyrmex minuchae and its host Proformica longiseta (Hymenoptera: Formicidae). Chemoecology 16, 235–240 (2006).

    CAS 

    Google Scholar 

  • Dettner, K. & Liepert, C. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39, 129–154 (1994).

    CAS 

    Google Scholar 

  • Lenoir, A., d’Ettorre, P. & Errard, C. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Von Beeren, C., Pohl, S. & Witte, V. On the use of adaptive resemblance terms in chemical ecology. Psyche 2012, 635761 (2012).

  • Lambardi, D., Dani, F. R., Turillazzi, S. & Boomsma, J. J. Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav. Ecol. Sociobiol. 61, 843–851 (2007).

    Google Scholar 

  • Uboni, A., Bagnères, A. G., Christidès, J. P. & Lorenzi, M. C. Cleptoparasites, social parasites and a common host: Chemical insignificance for visiting host nests, chemical mimicry for living in. J. Insect Physiol. 58, 1259–1264 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Quezada-Euán, J. J. G. et al. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect. Soc. 58, 31–38 (2011).

    Google Scholar 

  • Nunes, T. M., Mateus, S., Turatti, I. C., Morgan, E. & Zucchi, R. Nestmate recognition in the stingless bee Frieseomelitta varia (Hymenoptera, Apidae, Meliponini): Sources of chemical signals. Anim. Behav. 81, 463–467 (2011).

    Google Scholar 

  • Gutiérrez, E., Ruiz, D., Solís, T., May-Itzá, W.d.J., Moo-Valle, H. & Quezada-Euán, J.J.G. Does larval food affect cuticular profiles and recognition in eusocial bees? A test on Scaptotrigona gynes (Hymenoptera: Meliponini). Behav. Ecol. Sociobiol. 70, 871–879 (2016).

  • Jones, S. M. et al. The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav. Ecol. Sociobiol. 66, 1–12 (2012).

    Google Scholar 

  • Leonhardt, S.D. Chemical ecology of stingless bees. J. Chem. Ecol. 43, 385–402 (2021).

  • Akino, T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. News 11, 173–181 (2008).

    Google Scholar 

  • Lenoir, A., Hefetz, A., Simon, T. & Soroker, V. Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera: Formicidae). Physiol. Entomol. 26, 275–283 (2001).

    Google Scholar 

  • Von Beeren, C. et al. Chemical and behavioral integration of army ant-associated rove beetles—A comparison between specialists and generalists. Front. Zool. 15, 8 (2018).

    Google Scholar 

  • Kather, R. & Martin, S. J. Cuticular hydrocarbon profiles as a taxonomic tool: Advantages, limitations and technical aspects. Physiol. Entomol. 37, 25–32 (2012).

    CAS 

    Google Scholar 

  • Menzel, F., Blaimer, B. B. & Schmitt, T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc. R. Soc. B-Biol. Sci. 284, 20161727 (2017).

    Google Scholar 

  • Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Nat. Acad. Sci. 100, 7169–7174 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartke, J., Sprenger, P.P., Sahm, J, Winterberg, H., Orivel, J. et al. Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association. Ecol. Evolut. 9, 9160–9176 (2019).

  • Doebeli, M. & Dieckmann, U. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, S77–S101 (2000).

    PubMed 

    Google Scholar 

  • Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol. Lett. 16, 1004–1013 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cabej, N. R. Epigenetic Principles of Evolution (Elsevier, 2012).

    Google Scholar 

  • Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).

    Google Scholar 

  • Von Zuben, L. G. et al. Interspecific chemical communication in raids of the robber bee Lestrimelitta limao. Insect. Soc. 63, 339–347 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Conversations at the front line of climate

    3 Questions: The future of international education