Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).
Google Scholar
Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).
Google Scholar
Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).
Google Scholar
Finnicum, C. T. et al. Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk. BMC Microbiol. 19, 230 (2019).
Google Scholar
Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016).
Google Scholar
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).
Google Scholar
Miller, E. T., Svanback, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).
Google Scholar
Bjork, J., Díez-Vives, C., Astudillo-García, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).
Google Scholar
Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).
Google Scholar
Tredennick, A. T., de Mazancourt, C., Loreau, M. & Adler, P. B. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology 98, 971–981 (2017).
Google Scholar
Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).
Google Scholar
Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).
Google Scholar
Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).
Google Scholar
de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).
Google Scholar
Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).
Google Scholar
Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).
Google Scholar
Rainey, P. B. & Quistad, S. D. Toward a dynamical understanding of microbial communities. Philos. Trans. R. Soc. B 375, 20190248 (2020).
Google Scholar
Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).
Google Scholar
Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).
Google Scholar
Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B. & Sommer, S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat. Commun. 12, 6017 (2021).
Google Scholar
Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl Acad. Sci. USA 112, E2930–E2938 (2015).
Google Scholar
Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).
Google Scholar
Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).
Google Scholar
Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).
Google Scholar
Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).
Google Scholar
Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).
Google Scholar
Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe 25, 789–802 (2019).
Google Scholar
Smits, S. A., Marcobal, A., Higginbottom, S., Sonnenburg, J. L. & Kashyap, P. C. Individualized responses of gut microbiota to dietary intervention modeled in humanized mice. mSystems 1, e00098 (2016).
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).
Google Scholar
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
Google Scholar
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
Google Scholar
Grieneisen, L. et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373, 181–186 (2021).
Google Scholar
Alberts S. C. & Altmann, J. in Long-Term Field Studies of Primates (eds Kappeler, P. & Watts, D. P.) 261–287 (Springer, 2012).
Ren, T., Grieneisen, L., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet, and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).
Google Scholar
Grieneisen, L. et al. Genes, geology, and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B 286, 20190431 (2019).
Google Scholar
Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).
Google Scholar
Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).
Google Scholar
Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 26 (2021).
Google Scholar
Mellard, J. P., Audoye, P. & Loreau, M. Seasonal patterns in species diversity across biomes. Ecology 100, e02627 (2019).
Google Scholar
Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).
Google Scholar
Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2007).
Google Scholar
Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, e05224 (2015).
Google Scholar
Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).
Google Scholar
Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).
Google Scholar
Amato, K. R. et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb. Ecol. 74, 250–258 (2017).
Google Scholar
Amato, K. R. et al. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am. J. Phys. Anthropol. 155, 652–664 (2014).
Google Scholar
Perofsky, A. C., Leriw, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. R. Soc. B 284, 20172274 (2017).
Google Scholar
Silk, J. B. Activities and feeding behavior of free-ranging pregnant baboons. Int. J. Primatol. 8, 593–613 (1987).
Altmann, S. A. Foraging for Survival: Yearling Baboons in Africa (Univ. Chicago Press, 1998).
Bronikowski, A. M. & Altmann, J. Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behav. Ecol. Sociobiol. 39, 11–25 (1996).
Muruthi, P., Altmann, J. & Altmann, S. Resource base, parity and reproductive condition affect females’ feeding time and nutrient intake within and between groups of a baboon population. Oecologia 87, 467–472 (1991).
Google Scholar
Shopland, J. M. Food quality, spatial deployment, and the intensity of feeding interference in yellow baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 21, 149–156 (1987).
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).
Google Scholar
Sprockett D. tyRa: Build Models for Microbiome Data. R package version 0.1.0 https://danielsprockett.github.io/tyRa/articles/tyRa.html (2020).
Oksanen J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).
Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).
Google Scholar
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).
Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).
Google Scholar
Source: Ecology - nature.com