in

Tailored pathways toward revived farmland biodiversity can inspire agroecological action and policy to transform agriculture

  • Benton, T. G. & Bailey, R. The paradox of productivity: agricultural productivity promotes food system inefficiency. Glob. Sustain. 2, (2019).

  • IPBES Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Diaz, et al. (eds.). IPBES secretariat, Bonn, Germany, 56 p, (2019).

  • Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25, 1941–1956 (2019).

    Article 

    Google Scholar 

  • Jones, S. K. et al. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nat. Food 2, 712–723 (2021).

    Article 

    Google Scholar 

  • Butler, S. J., Vickery, J. A. & Norris, K. Farmland biodiversity and the footprint of agriculture. Science 315, 381–384 (2007).

    CAS 
    Article 

    Google Scholar 

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    Article 

    Google Scholar 

  • Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Nat. Acad. Sci. 119, e2109217118 (2022).

    CAS 
    Article 

    Google Scholar 

  • Diaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    CAS 
    Article 

    Google Scholar 

  • Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).

    Article 

    Google Scholar 

  • Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol .4, 1150–1152 (2020).

    Article 

    Google Scholar 

  • Altieri, M. A. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 93, 1–24 (2002).

    Article 

    Google Scholar 

  • HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition, Food and Agriculture Organization (FAO). (2019).

  • Barrios, E. et al. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 16, 230–247 (2020).

    Article 

    Google Scholar 

  • FAO. Catalysing dialogue and cooperation to scale up agroecology: outcomes of the FAO regional seminars on agroecology. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/3/I8992EN/i8992en.pdf (2018).

  • Wezel, A. et al. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 40, 40 (2020).

    Article 

    Google Scholar 

  • FAO. Building a common vision for sustainable food and agriculture, Principles, and approaches. Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/3/i3940e/i3940e.pdf, (2014).

  • Kleijn, D., Rundlof, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26, 474–481 (2011).

    Article 

    Google Scholar 

  • Seppelt, R. et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. BioScience 66, 890–896 (2016).

    Article 

    Google Scholar 

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett. 8, 857–874 (2005).

    Article 

    Google Scholar 

  • EEA High nature value farmland Characteristics, trends, and policy challenges. EEA report No 1/2004, European Environment Agency, Luxembourg, Office for Official Publications of the European Communities, 32 pp (2004).

  • Ichikawa, K. & Toth, G. G. The Satoyama Landscape of Japan: The Future of an Indigenous Agricultural System in an Industrialized Society. In: Nair, P., Garrity, D. (eds) Agroforestry-The Future of Global Land Use. Advances in Agroforestry, 9. Springer, Dordrecht. 341–358. (2012).

  • Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystem 15, 900–912 (2012).

    Article 

    Google Scholar 

  • Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 

    Google Scholar 

  • Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2021).

    Article 

    Google Scholar 

  • Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

    Article 

    Google Scholar 

  • Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).

    Article 

    Google Scholar 

  • Sietz, D., Fleskens, L. & Stringer, L. C. Learning from non-linear ecosystem dynamics is vital for achieving Land Degradation Neutrality. Land Degrad. Dev. 28, 2308–2314 (2017).

    Article 

    Google Scholar 

  • Van den Elsen, E. et al. Advances in understanding and managing catastrophic shifts in Mediterranean ecosystems. Front. Ecol. Evol. 8:561101, Section Conservation, https://doi.org/10.3389/fevo.2020.561101. (2020).

  • Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2, 34–42 (2010).

    Article 

    Google Scholar 

  • Tougiani, A., Guero, C. & Rinaudo, T. Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal 74, 377 (2009).

    Article 

    Google Scholar 

  • Baumhardt, R. L. Dust Bowl Era. Encyclopedia of Water Science, pp. 187 – 191, New York, USA. (2003).

  • Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).

    CAS 
    Article 

    Google Scholar 

  • SER The SER International Primer on Ecological Restoration, Society for Ecological Restoration International Science & Policy Working Group, www.ser.org & Tucson, Society for Ecological Restoration International (2004).

  • Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).

    Google Scholar 

  • Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).

    Article 

    Google Scholar 

  • Lomba, A. et al. Back to the future: rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).

    Article 

    Google Scholar 

  • Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).

    Article 

    Google Scholar 

  • Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).

    Article 

    Google Scholar 

  • Teixeira, H. M. et al. Understanding farm diversity to promote agroecological transitions. Sustainability 10, 4337 (2018).

    Article 

    Google Scholar 

  • Fraser, M. D., Moorby, J. M., Vale, J. E. & Evans, D. M. Mixed grazing systems benefit both upland biodiversity and livestock production. PLOS ONE 9, e89054 (2014).

    Article 
    CAS 

    Google Scholar 

  • Reganold, J. & Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).

    Article 

    Google Scholar 

  • Niggli, U., Slabe, A., Schmid, O., Halberg, N. & Schlüter, M. Vision for an Organic Food and Farming Research Agenda 2025. Organic Knowledge for the Future. Technology Platform Organics. IFOAM Regional Group European Union (IFOAM EU Group), Brussels and International Society of Organic Agriculture Research (ISOFAR), Bonn, Germany (2008).

  • Badgley, C. et al. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22, 86–108 (2007).

    Article 

    Google Scholar 

  • Boddey, R. M., de Moraes, J. C., Alves, B. J. R. & Urquiaga, S. The contribution of biological nitrogen fixation for sustainable agriculture in the tropics. Soil Biol. Biochem. 29, 787–799 (1997).

    CAS 
    Article 

    Google Scholar 

  • Sharifi, O. et al. Barriers to conversion to organic farming: a case study in Babol County in Iran. Afr. J. Agr. Res. 5, 2260–2267 (2010).

    Google Scholar 

  • Peetsmann, E. et al. Organic marketing in Estonia. Agron. Res. 7, 706–711 (2009).

    Google Scholar 

  • Palsova, L., Schwarczova, L., Schwarcz, P. & Bandlerova, A. The support of implementation of organic farming in the Slovak Republic in the context of sustainable development. Procedia—Soc. Behav. Sci. 110, 520–529 (2014).

    Article 

    Google Scholar 

  • Konstantinidis, C. Capitalism in green disguise: the political economy of organic farming in the European Union. Rev. Radic. Polit. Econ. 50, 830–852 (2018).

    Article 

    Google Scholar 

  • Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B. 282, 20141396 (2015).

    Article 

    Google Scholar 

  • Willer, H., Trávníček, J., Meier, C. & Schlatter, B. (Eds.) The World of Organic Agriculture: Statistics and Emerging Trends 2021. Research Institute of Organic Agriculture FiBL, Frick and IFOAM Organics International, Bonn, Germany (2021).

  • Rosset, P. M., Sosa, B. M., Roque Jaime, A. M. & Ávila Lozano, D. A. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty. J. Peasant Stud. 38, 161–191 (2011).

    Article 

    Google Scholar 

  • Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).

    Article 

    Google Scholar 

  • Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Chang. Biol. 27, 4697–4710 (2021).

    CAS 
    Article 

    Google Scholar 

  • Pywell, R. F. et al. Wildlife‐friendly farming increases crop yield: Evidence for ecological intensification. Proc. Royal Soc. B Biol. Sci. 282, 20151740 (2015).

    Article 

    Google Scholar 

  • Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).

    Article 

    Google Scholar 

  • Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science 341, 33–34 (2013).

    CAS 
    Article 

    Google Scholar 

  • Daum, T. Farm robots: ecological utopia or dystopia? Trends Ecol. Evol. 36, 774–777 (2021).

    Article 

    Google Scholar 

  • Neethirajan, S. & Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 32, 100408 (2021).

    Article 

    Google Scholar 

  • Mota, J. F., Peñas, J., Castro, H., Cabelllo, J. & Guirado, J. S. Agricultural development vs. biodiversity conservation: The Mediterranean semiarid vegetation in El Ejido (Almería, Southeastern Spain). Biodivers. Conserv. 5, 1597–1616 (1996).

    Article 

    Google Scholar 

  • Giagnocavo, C. et al. Reconnecting farmers with nature through agroecological transitions: interacting niches and experimentation and the role of agricultural knowledge and innovation systems. Agriculture 12, 137 (2022).

    Article 

    Google Scholar 

  • Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).

    Article 

    Google Scholar 

  • Shaffer, M. L. Minimum Viable Populations: coping with uncertainty. In: Soulé M. E., editor. Viable populations for conservation. Cambridge: Cambridge University Press. pp. 69-86. (1987).

  • Sendzimir, J., Reij, C. P. & Magnuszewski, P. Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecol. Soc. 16, 1 (2011).

    Article 

    Google Scholar 

  • Weston, P., Hong, R., Kaboré, C. & Kull, C. A. Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa. Environ. Manage. 55, 1402–1417 (2015).

    Article 

    Google Scholar 

  • De Souza, H. N. et al. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 146, 179–196 (2012).

    Article 

    Google Scholar 

  • WWF (2021) Plowprint report. World Wildlife Fund, Washington, DC, USA.

  • Senapathi, D. et al. Pollinator conservation—The difference between managing for pollination services and preserving pollinator diversity. Curr. Opin. Insect Sci. 12, 93–101 (2015).

    Article 

    Google Scholar 

  • Sietz, D. & Feola, G. Resilience in the rural Andes: critical dynamics, constraints and emerging opportunities. Reg. Environ. Change 16, 2163–2169 (2016).

    Article 

    Google Scholar 

  • Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. Biol. Sci. Royal Soc. 276, 903–909 (2009).

    CAS 

    Google Scholar 

  • Tittonell, P. Assessing resilience and adaptability in agroecological transitions. Agric Syst 184, 102862 (2020).

    Article 

    Google Scholar 

  • Jia, G. et al. Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M., Belkacemi, J. Malley, (eds.)]. Intergovernmental Panel on Climate Change. (2019).

  • Tittonell, P. et al. Ecological Intensification: Local Innovation to Address Global Challenges. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_1. (2016).

  • Beyer, R. M. et al. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).

    Article 

    Google Scholar 

  • Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 183 (2021).

    Article 

    Google Scholar 

  • Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Glob. Food Secur. 24, 100346 (2020).

    Article 

    Google Scholar 

  • Grassini, P., Eskridge, K. & Cassman, K. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).

    Article 
    CAS 

    Google Scholar 

  • U. N. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York (2015).

  • EC Farm to Fork strategy for a fair, healthy, and environmentally-friendly food system, European Commission, Brussels, https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_de (2020).

  • UNCBD First draft of the post-2020 global biodiversity framework. CBD/WG2020/3/3, https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021)

  • Lacoste, M. et al. On-Farm Experimentation to transform global agriculture. Nat. Food 3, 11–18 (2022).

    Article 

    Google Scholar 

  • Runhaar, H. Governing the transformation towards ‘nature-inclusive’ agriculture: insights from the Netherlands. Int. J. Agric. Sustain. 15, 340–349 (2017).

    Article 

    Google Scholar 

  • Ferguson, R. S. & Lovell, S. T. Permaculture for agroecology: design, movement, practice, and worldview. A review. Agron. Sustain. Dev. 34, 251–274 (2014).

    Article 

    Google Scholar 

  • Oberlack, C. et al. Archetype analysis in sustainability research: Meanings, motivations, and evidence-based policy making. Special feature: archetype analysis in sustainability research. Ecology and Society 24, 26 (2019).

    Article 

    Google Scholar 

  • Sietz, D. et al. Archetype analysis in sustainability research: Methodological portfolio and analytical frontiers. Special Feature: Archetype Analysis in Sustainability Research. Ecol. Soc. 24, 34 (2019).

    Article 

    Google Scholar 

  • Piemontese, L. et al. Validity and validation in archetype analysis: Practical assessment framework and guidelines. Environ. Res. Lett. 17, 025010 (2022).

    Article 

    Google Scholar 

  • Sietz, D. et al. Nested archetypes of vulnerability in African drylands: Where lies potential for sustainable agricultural intensification? Environ. Res. Lett. 12, 095006 (2017).

    Article 

    Google Scholar 

  • Alexandridis, N. et al. Archetype models upscale understanding of natural pest control response to land-use change. Ecological Applications. Accepted Author Manuscript e2696. https://doi.org/10.1002/eap.2696. (2022).

  • Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).

    Article 

    Google Scholar 

  • Jack, B. K., Kousky, C. & Sims, K. R. E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl Acad Sci. 105, 9465–9470 (2008).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the carbon removal challenge

    Evaluation of animal and plant diversity suggests Greenland’s thaw hastens the biodiversity crisis