Benton, T. G. & Bailey, R. The paradox of productivity: agricultural productivity promotes food system inefficiency. Glob. Sustain. 2, (2019).
IPBES Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Diaz, et al. (eds.). IPBES secretariat, Bonn, Germany, 56 p, (2019).
Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25, 1941–1956 (2019).
Google Scholar
Jones, S. K. et al. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nat. Food 2, 712–723 (2021).
Google Scholar
Butler, S. J., Vickery, J. A. & Norris, K. Farmland biodiversity and the footprint of agriculture. Science 315, 381–384 (2007).
Google Scholar
Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).
Google Scholar
Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Nat. Acad. Sci. 119, e2109217118 (2022).
Google Scholar
Diaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Google Scholar
Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).
Google Scholar
Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol .4, 1150–1152 (2020).
Google Scholar
Altieri, M. A. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 93, 1–24 (2002).
Google Scholar
HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition, Food and Agriculture Organization (FAO). (2019).
Barrios, E. et al. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 16, 230–247 (2020).
Google Scholar
FAO. Catalysing dialogue and cooperation to scale up agroecology: outcomes of the FAO regional seminars on agroecology. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/3/I8992EN/i8992en.pdf (2018).
Wezel, A. et al. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 40, 40 (2020).
Google Scholar
FAO. Building a common vision for sustainable food and agriculture, Principles, and approaches. Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/3/i3940e/i3940e.pdf, (2014).
Kleijn, D., Rundlof, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26, 474–481 (2011).
Google Scholar
Seppelt, R. et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. BioScience 66, 890–896 (2016).
Google Scholar
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett. 8, 857–874 (2005).
Google Scholar
EEA High nature value farmland Characteristics, trends, and policy challenges. EEA report No 1/2004, European Environment Agency, Luxembourg, Office for Official Publications of the European Communities, 32 pp (2004).
Ichikawa, K. & Toth, G. G. The Satoyama Landscape of Japan: The Future of an Indigenous Agricultural System in an Industrialized Society. In: Nair, P., Garrity, D. (eds) Agroforestry-The Future of Global Land Use. Advances in Agroforestry, 9. Springer, Dordrecht. 341–358. (2012).
Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystem 15, 900–912 (2012).
Google Scholar
Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Google Scholar
Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2021).
Google Scholar
Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930 (2021).
Google Scholar
Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).
Google Scholar
Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).
Google Scholar
Sietz, D., Fleskens, L. & Stringer, L. C. Learning from non-linear ecosystem dynamics is vital for achieving Land Degradation Neutrality. Land Degrad. Dev. 28, 2308–2314 (2017).
Google Scholar
Van den Elsen, E. et al. Advances in understanding and managing catastrophic shifts in Mediterranean ecosystems. Front. Ecol. Evol. 8:561101, Section Conservation, https://doi.org/10.3389/fevo.2020.561101. (2020).
Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2, 34–42 (2010).
Google Scholar
Tougiani, A., Guero, C. & Rinaudo, T. Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal 74, 377 (2009).
Google Scholar
Baumhardt, R. L. Dust Bowl Era. Encyclopedia of Water Science, pp. 187 – 191, New York, USA. (2003).
Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).
Google Scholar
SER The SER International Primer on Ecological Restoration, Society for Ecological Restoration International Science & Policy Working Group, www.ser.org & Tucson, Society for Ecological Restoration International (2004).
Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).
Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).
Google Scholar
Lomba, A. et al. Back to the future: rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).
Google Scholar
Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).
Google Scholar
Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).
Google Scholar
Teixeira, H. M. et al. Understanding farm diversity to promote agroecological transitions. Sustainability 10, 4337 (2018).
Google Scholar
Fraser, M. D., Moorby, J. M., Vale, J. E. & Evans, D. M. Mixed grazing systems benefit both upland biodiversity and livestock production. PLOS ONE 9, e89054 (2014).
Google Scholar
Reganold, J. & Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).
Google Scholar
Niggli, U., Slabe, A., Schmid, O., Halberg, N. & Schlüter, M. Vision for an Organic Food and Farming Research Agenda 2025. Organic Knowledge for the Future. Technology Platform Organics. IFOAM Regional Group European Union (IFOAM EU Group), Brussels and International Society of Organic Agriculture Research (ISOFAR), Bonn, Germany (2008).
Badgley, C. et al. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22, 86–108 (2007).
Google Scholar
Boddey, R. M., de Moraes, J. C., Alves, B. J. R. & Urquiaga, S. The contribution of biological nitrogen fixation for sustainable agriculture in the tropics. Soil Biol. Biochem. 29, 787–799 (1997).
Google Scholar
Sharifi, O. et al. Barriers to conversion to organic farming: a case study in Babol County in Iran. Afr. J. Agr. Res. 5, 2260–2267 (2010).
Peetsmann, E. et al. Organic marketing in Estonia. Agron. Res. 7, 706–711 (2009).
Palsova, L., Schwarczova, L., Schwarcz, P. & Bandlerova, A. The support of implementation of organic farming in the Slovak Republic in the context of sustainable development. Procedia—Soc. Behav. Sci. 110, 520–529 (2014).
Google Scholar
Konstantinidis, C. Capitalism in green disguise: the political economy of organic farming in the European Union. Rev. Radic. Polit. Econ. 50, 830–852 (2018).
Google Scholar
Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B. 282, 20141396 (2015).
Google Scholar
Willer, H., Trávníček, J., Meier, C. & Schlatter, B. (Eds.) The World of Organic Agriculture: Statistics and Emerging Trends 2021. Research Institute of Organic Agriculture FiBL, Frick and IFOAM Organics International, Bonn, Germany (2021).
Rosset, P. M., Sosa, B. M., Roque Jaime, A. M. & Ávila Lozano, D. A. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty. J. Peasant Stud. 38, 161–191 (2011).
Google Scholar
Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).
Google Scholar
Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Chang. Biol. 27, 4697–4710 (2021).
Google Scholar
Pywell, R. F. et al. Wildlife‐friendly farming increases crop yield: Evidence for ecological intensification. Proc. Royal Soc. B Biol. Sci. 282, 20151740 (2015).
Google Scholar
Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).
Google Scholar
Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science 341, 33–34 (2013).
Google Scholar
Daum, T. Farm robots: ecological utopia or dystopia? Trends Ecol. Evol. 36, 774–777 (2021).
Google Scholar
Neethirajan, S. & Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 32, 100408 (2021).
Google Scholar
Mota, J. F., Peñas, J., Castro, H., Cabelllo, J. & Guirado, J. S. Agricultural development vs. biodiversity conservation: The Mediterranean semiarid vegetation in El Ejido (Almería, Southeastern Spain). Biodivers. Conserv. 5, 1597–1616 (1996).
Google Scholar
Giagnocavo, C. et al. Reconnecting farmers with nature through agroecological transitions: interacting niches and experimentation and the role of agricultural knowledge and innovation systems. Agriculture 12, 137 (2022).
Google Scholar
Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).
Google Scholar
Shaffer, M. L. Minimum Viable Populations: coping with uncertainty. In: Soulé M. E., editor. Viable populations for conservation. Cambridge: Cambridge University Press. pp. 69-86. (1987).
Sendzimir, J., Reij, C. P. & Magnuszewski, P. Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecol. Soc. 16, 1 (2011).
Google Scholar
Weston, P., Hong, R., Kaboré, C. & Kull, C. A. Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa. Environ. Manage. 55, 1402–1417 (2015).
Google Scholar
De Souza, H. N. et al. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 146, 179–196 (2012).
Google Scholar
WWF (2021) Plowprint report. World Wildlife Fund, Washington, DC, USA.
Senapathi, D. et al. Pollinator conservation—The difference between managing for pollination services and preserving pollinator diversity. Curr. Opin. Insect Sci. 12, 93–101 (2015).
Google Scholar
Sietz, D. & Feola, G. Resilience in the rural Andes: critical dynamics, constraints and emerging opportunities. Reg. Environ. Change 16, 2163–2169 (2016).
Google Scholar
Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. Biol. Sci. Royal Soc. 276, 903–909 (2009).
Google Scholar
Tittonell, P. Assessing resilience and adaptability in agroecological transitions. Agric Syst 184, 102862 (2020).
Google Scholar
Jia, G. et al. Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M., Belkacemi, J. Malley, (eds.)]. Intergovernmental Panel on Climate Change. (2019).
Tittonell, P. et al. Ecological Intensification: Local Innovation to Address Global Challenges. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_1. (2016).
Beyer, R. M. et al. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).
Google Scholar
Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 183 (2021).
Google Scholar
Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Glob. Food Secur. 24, 100346 (2020).
Google Scholar
Grassini, P., Eskridge, K. & Cassman, K. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).
Google Scholar
U. N. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York (2015).
EC Farm to Fork strategy for a fair, healthy, and environmentally-friendly food system, European Commission, Brussels, https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_de (2020).
UNCBD First draft of the post-2020 global biodiversity framework. CBD/WG2020/3/3, https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021)
Lacoste, M. et al. On-Farm Experimentation to transform global agriculture. Nat. Food 3, 11–18 (2022).
Google Scholar
Runhaar, H. Governing the transformation towards ‘nature-inclusive’ agriculture: insights from the Netherlands. Int. J. Agric. Sustain. 15, 340–349 (2017).
Google Scholar
Ferguson, R. S. & Lovell, S. T. Permaculture for agroecology: design, movement, practice, and worldview. A review. Agron. Sustain. Dev. 34, 251–274 (2014).
Google Scholar
Oberlack, C. et al. Archetype analysis in sustainability research: Meanings, motivations, and evidence-based policy making. Special feature: archetype analysis in sustainability research. Ecology and Society 24, 26 (2019).
Google Scholar
Sietz, D. et al. Archetype analysis in sustainability research: Methodological portfolio and analytical frontiers. Special Feature: Archetype Analysis in Sustainability Research. Ecol. Soc. 24, 34 (2019).
Google Scholar
Piemontese, L. et al. Validity and validation in archetype analysis: Practical assessment framework and guidelines. Environ. Res. Lett. 17, 025010 (2022).
Google Scholar
Sietz, D. et al. Nested archetypes of vulnerability in African drylands: Where lies potential for sustainable agricultural intensification? Environ. Res. Lett. 12, 095006 (2017).
Google Scholar
Alexandridis, N. et al. Archetype models upscale understanding of natural pest control response to land-use change. Ecological Applications. Accepted Author Manuscript e2696. https://doi.org/10.1002/eap.2696. (2022).
Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).
Google Scholar
Jack, B. K., Kousky, C. & Sims, K. R. E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl Acad Sci. 105, 9465–9470 (2008).
Google Scholar
Source: Ecology - nature.com