Influence of the PLHP on water depth distribution
The hydrodynamic process of Poyang Lake with and without the PLHP is simulated by M1 and M2, respectively. By comparing and analyzing the simulation results, we obtain the changes of the water depth, i.e., the water depth in M2 minus the water depth in M1, in Poyang Lake. Figure 5 shows the mean monthly water depth differences during September and October in three typical years. The water depth in Poyang Lake has increased obviously in most cases after the operation of the project. Combining the water level processes in Fig. 4 and the water depth differences in Fig. 5, the area of the changes in the water depth is seen to be mainly controlled by the Higher Water Levels (HWL) between M1 and M2. While the magnitude of the changes is mainly controlled by the Differences in Water Levels (DWL) between M1 and M2.
As shown in the water level variations processes in Fig. 4a, in the low-water-level year (2006), where the natural inflow is relatively small, the water level in M2 is much higher than that in M1 and reaches the peak value around 10th of October. The DWL also reaches maximum in this time and then gradually decreases. As a consequence, the water depth increases the most in October 2006. As shown in Fig. 5d, in most areas of Poyang Lake, the Xiuhe River and the Ganjiang River, the water depth is increased by more than 1 m. Especially in the main channel from the PLHP to Tangyin and Wucheng, the increase can exceed 4 m, as shown in the red parts in Fig. 5d. While over the surrounding flooded land, the increase ranges from 1 to 3 m. The increase in the water depth during September was essentially the same as that in October, but the area and magnitude of the changes are slightly reduced. The maximum increase is about 3.1 m, which is mainly concentrated in the main channel on the north of Songmen Mountain.
In the medium-water-level year (2018), the water level in M1 is constantly lower than that in M2 during September and October, which can be seen in Fig. 4b. Both the HWL and DWL first increase and then decrease, reaching their maximum values in early September and late September, respectively. Furthermore, the mean monthly HWL and DWL in September are slightly greater than those in October. As a consequence, the area and magnitude of the changes in Fig. 5b are larger than those in Fig. 5e. In September 2018, almost the entire main lake region becomes influenced by the PLHP and the increase in water depth ranges from 0 to 3.4 m. While in October 2018, the increase in water depth ranges from 0 to 3.2 m, and the significant increase is mainly concentrated in the main channel on the north of Songmen Mountain.
In the high-water-level year (2010), as shown in Fig. 4c, the HWL rises and the DWL decreases as compared to those in other years. During the first 35 days, the hydrodynamic conditions in M2 are exactly the same as that in M1, so the PLHP has no effect on the water depth in the lake region in September (Fig. 5c). However, after the 6th of October, the water level in M2 begins to be higher than that in M1 under the regulation of the PLHP. Although the DWL is small during this time, the HWL is relatively high and thus results in large areas of water depth increase, as shown in Fig. 5f. The maximum increase in water depth is approximately 1.1 m.
In these two months, the northeastern parts of the two national nature reserves are observably influenced., The area of the changes is greatest in September 2018, there has been a marked increase in water depth in most areas of the reserves, with the maximum increase reaching about 2.8 m. While in other periods during September and October, with the exception of September 2010, the water depth is increased significantly in about 1/3 ~ 1/2 area of the reserves, with the maximum increase reaching about 2.6 m. In the meantime, the water depth in the southwestern part of these two reserves remains essentially the same as before the operation of the PLHP, with an increase of less than 0.25 m as shown in the grey parts in Fig. 5.
Influence of the PLHP on habitat suitability of Vallisneria natans
According to the relationship between the habitat suitability of Vallisneria natans and the water depth as mentioned in Fig. 3, the water depth results can be translated into the habitat suitability of Vallisneria natans, as shown in Fig. 6. The first and third rows are the distributions of the habitat suitability during September and October, respectively, in the three typical years before the operation of the PLHP, while the second and fourth rows are distributions of the habitat suitability after the operation of the PLHP. The grey parts in Fig. 6 indicate that the habitat suitability is 0, implying that the area is dry or the water depth is greater than 4 m.
As shown in Fig. 6, the suitable area for the growth of Vallisneria natans is mainly concentrated over the flooded land. As the water depth in the main channel is generally more than 4 m, so the habitat suitability is usually 0 there.
Before the operation of the PLHP (M1), the water level in 2010 is higher than that those in 2006 and 2018. Therefore, there are more areas covered by water in 2010, and the habitat suitability in Fig. 6c is greater than those in Fig. 6a,b. Similarly, the habitat suitability in Fig. 6i is greater than those in Fig. 6g,h. Because the lake bed is lower in northeastern part than that in the southwestern part, the water depth generally decreases from northeast to southwest. During September and October in 2006 and 2018, large areas of bed in the northeastern part are covered by water, and the water depth is less than 4 m, which is suitable for the growth of Vallisneria natans. While large areas in the southwestern part of the lake are dry, and thus the habitat suitability is 0, as shown in the grey parts in the southwestern part of the main lake region in Fig. 6a,b,g,h. However, because the water level is relatively high during September and October in 2010, there are almost no dry areas in the lake region. As a result, with the exception of the main channel, where the water depth is greater than 4 m, most of the areas in the lake region are suitable for the growth of Vallisneria natans. The most suitable areas for Vallisneria natans vary between these two months, as the water depth in September 2010 is greater than that in October 2010. As shown in Fig. 6c, the red parts are mainly concentrated in the southwestern part of the lake, because there are large areas of flooded region with water depths ranging from 1 to 2 m, which is ideal for the growth of Vallisneria natans. On the contrary, the water depth in the northeastern flood land is usually between 2-4 m. In Fig. 6i, however, the red parts are mainly concentrated in the northeastern part of the lake, because the water depth there is usually between 1 and 2 m, and the water depth in the southwestern flood land is now usually less than 1 m.
After the operation of the PLHP (M2), with the rise of the water level in the lake region, the suitable area for the growth of Vallisneria natans is increased greatly, and the variation is proportional to the DWL during the same period. The increase is most obvious in the low-water-level year (2006), followed by the medium water level year (2018), and becomes insignificant in the high-water-level year (2010). Such a trend is consistent with the previously mentioned variation in the water depth.
Since the DWL is relatively small during September and October in 2010, the habitat suitability in this period is changed little between M1 and M2 (Fig. 6). The distribution of the habitat suitability is completely the same between Fig. 6c,f, while the difference in the distributions of habitat suitability between Fig. 6i,l is subtle. As the water level in M1 is relatively low during September and October in 2006 and 2018, the suitable area for the growth of Vallisneria natans in M2 is expanded from northeast to southwest under the influence of the PLHP. In addition, the habitat suitability is increased greatly in Wucheng National Nature Reserve and Nanji National Nature Reserve. Before the operation of the PLHP, there are large areas of dry land in the two reserves, and thus the habitat suitability in these dry areas is 0. After the operation of the PLHP, according the previous research, more than 1/3 of area in the two reserves sees apparent increases in water depth. The water depth is increased to 1 ~ 2 m and thus the habitat suitability is increased to 1.0 in the northeastern part of the reserves. In the southwestern part of the reserves, although the increase of water depth is not significant, most of the lake bed has changed its status from being dry to being wet and the habitat suitability is correspondingly increased from 0 to 0.1 ~ 0.2, as shown in Figs. 6d,e,j,k. This means that the two nature reserves will be more suitable for the growth of Vallisneria natans after the operation of the PLHP, and there it will be easier for Siberian Crane to find food here.
Changes in habitat area of Vallisneria natans
On the basis of formula (6), we calculate the habitat area from 1st of September to 31st of October in three typical years, as shown in Fig. 7 and Table 3. In 2006, the habitat area is increased greatly, and the impact of the PLHP on habitat area is most evident in October. Compared with M1, the mean monthly habitat area in M2 is increased by 190.92%. Especially around the 10th of October, the increase can reach about 867.79 km2, accounting for about 1/4 of the total area of the lake. Compared with 2006, the increase of habitat area in 2018 is smaller. The mean monthly habitat area in M2 is increased by 57.07% in September and by 145.27% in October. The largest change occurs in late September, with an increase of about 841.43 km2, which is basically the same as in 2006. While in 2010, compared with M1, the habitat area in M2 is completely the same in September and the average increase in October is only 18.07%, indicating that when the water level is relatively high the operation of the PLHP will make little change to the habitat area.
After the operation of the PLHP, the habitat area can reach more than 1000 km2 during the most time of September and October in three typical years, accounting for about 1/3 of the total area of the lake region. In other words, the latest official regulatory scheme of the PLHP is beneficial for the growth of Vallisneria natans in September and October. It means that, whether it is a low-water-level year, medium-water-level year or high-water-level year, before Siberian Crane fly to Poyang Lake for winter, Vallisneria natans will occupy large areas of the flooded land under the regulation of the PLHP. It will ensure that Siberian Crane can consume abundant tubers of Vallisneria natans as food in winter, allowing them to better survive and reproduce in the wetlands of Poyang Lake.
In this research, the habitat suitability model of Vallisneria natans in Poyang Lake is established based on the previous research of Chen et al.16. This model only considers the effect of water depth, which mainly influences the growth of aquatic plant by changing the degree of light attenuation34. In fact, temperature and flow velocity can also influence the growth of Vallisneria natans according the relevant studies. However, temperature only plays a decisive role in the germination period38 and is rarely considered as an influencing factor during the growth period of Vallisneria natans. While high flow velocity may adversely affect the growth of Vallisneria natans during the seedling period, adult Vallisneria plants have an extensive root–rhizome system and long ribbon-like leaves to prevent them from being torn apart in rapid water39. Vallisneria natans often begin to sprout in March, reaching the tillering stage in June or July in Poyang Lake region. As a consequence, the temperature and flow velocity will have little effect on the growth of Vallisneria natans during the study period in this research (September and October). Therefore, the water depth can be regarded as the main factor affecting the suitability of Vallisneria natans during the mature period.
There have been several scholars who have studied the effect of water depth on the growth of Vallisneria natans in other areas. Xiao et al.40 reported that Vallisneria natans grow rapidly with depths of 110–160 cm, while the growth is severely retarded with a depth of 250 cm. Cao et al.34 carried out experiments in turbid water and reported that the water depth of about 130 cm is most suitable for the growth of Vallisneria natans, while higher water depth will be less favorable for the growth. The inconsistency between these findings and the habitat suitability curve proposed by Chen et al.16 may be explained by the climate differences in different regions, as well as the different degrees of turbidity in water. According to the above analysis, the habitat suitability model of Vallisneria natans in this paper is established based on the habitat suitability curve proposed by Chen et al. (2020) as it represents to the growth characteristics of Vallisneria natans in Poyang Lake region.
According to the above analysis, the latest regulatory scheme of the PLHP will effectively increase the water level in the lake region and expand the habitat area of Vallisneria natans, especially in low-water-level years. This finding is different from some of the previous research. Zhu et al.15 used the average water depth during the growing period of Vallisneria natans (from March to October) to reflect the availability of this food resource for Siberian Crane. They found that the PLHP had few influences on Vallisneria natans. This was because the PLHP remain completely open from April to August and it takes effect only in March, September and October during the growing period of Vallisneria natans. Therefore, the average water depth during March to October differs little whether with or without the PLHP, which would certainly underestimate the impact of the PLHP. The present study focuses on September and October, and uses the mean monthly water depth to reflect the habitat suitability of Vallisneria natans. In this period, the natural water level is relatively low in M1, and the operation of the PLHP increases the water level and inundates large areas of otherwise dry land. As a result, the habitat areas of Vallisneria natans observe an increase.
Source: Ecology - nature.com