in

Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain

  • 1.

    Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 12, 56. https://doi.org/10.1186/1475-2875-12-56 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Mouchet, J. et al. Biodiversité du paludisme dans le monde. (Editions John Libbey Eurotext, 2004).

  • 3.

    Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit Vectors 13, 295. https://doi.org/10.1186/s13071-020-04170-7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Antonio-Nkondjio, C. et al. Complexity of the malaria vectorial system in Cameroon: contribution of secondary vectors to malaria transmission. J. Med. Entomol. 43, 1215–1221. https://doi.org/10.1093/jmedent/43.6.1215 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Afrane, Y. A., Bonizzoni, M. & Yan, G. in Current Topics in Malaria Ch. 20, (2016).

  • 6.

    Goupeyou-Youmsi, J. et al. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighboring villages of Madagascar. bioRxiv 13, 430, https://doi.org/10.1101/787432 (2019).

  • 7.

    Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196. https://doi.org/10.1016/j.pt.2015.11.010 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Killeen, G. F. Control of malaria vectors and management of insecticide resistance through universal coverage with next-generation insecticide-treated nets. Lancet 395, 1394–1400. https://doi.org/10.1016/s0140-6736(20)30745-5 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Kreppel, K. S. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10, 14527. https://doi.org/10.1038/s41598-020-71187-4 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 10.

    Chinula, D. et al. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: an observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit Vectors 11, 544, https://doi.org/10.1186/s13071-018-3121-0 (2018).

  • 11.

    Lwetoijera, D. W. et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 13, 331. https://doi.org/10.1186/1475-2875-13-331 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Russell, T. L. et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 9, 187. https://doi.org/10.1186/1475-2875-9-187 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Sougoufara, S., Harry, M., Doucoure, S., Sembene, P. M. & Sokhna, C. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30, 365–368. https://doi.org/10.1111/mve.12171 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Agyekum, T. P. et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: Implications for malaria control in a future warmer climate. Int. J. Environ. Res. Public Health 18, 7255 (2021).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Smith, M. W. et al. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Nat. Commun. 11, 4353. https://doi.org/10.1038/s41467-020-18239-5 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 16.

    Chemison, A. et al. Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nat. Commun. 12, 3971. https://doi.org/10.1038/s41467-021-24134-4 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 17.

    Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220. https://doi.org/10.1016/j.pt.2004.03.001 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Carnevale, P. & Manguin, S. Review of issues on residual malaria transmission. J. Infect. Dis. 223, S61–S80. https://doi.org/10.1093/infdis/jiab084 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Killeen, G. F., Chaki, P. P., Reed, T. E., Moyes, C. L. & Govella, N. J. in Towards Malaria Elimination – A Leap Forward Ch. 17, (2018).

  • 20.

    Killeen, G. F. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 13, 330. https://doi.org/10.1186/1475-2875-13-330 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145, 622–633. https://doi.org/10.1017/S0031182018000343 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. https://doi.org/10.1038/srep17952 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    St Laurent, B. et al. Molecular characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. Am. J. Trop. Med. Hyg. 94, 327–335. https://doi.org/10.4269/ajtmh.15-0562 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Zhong, D. et al. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci. Rep. 10, 16139. https://doi.org/10.1038/s41598-020-73073-5 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 25.

    Killeen, G. F. et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob. Health 2, e000211. https://doi.org/10.1136/bmjgh-2016-000211 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar J. 18, 311. https://doi.org/10.1186/s12936-019-2951-3 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Fillinger, U. & Lindsay, S. W. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop. Med. Int. Health 11, 1629–1642. https://doi.org/10.1111/j.1365-3156.2006.01733.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Hardy, A., Makame, M., Cross, D., Majambere, S. & Msellem, M. Using low-cost drones to map malaria vector habitats. Parasit Vectors 10, 29. https://doi.org/10.1186/s13071-017-1973-3 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Lwetoijera, D. et al. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania. Malar J. 13, 161. https://doi.org/10.1186/1475-2875-13-161 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malaria J. https://doi.org/10.1186/1475-2875-6-76 (2007).

    Article 

    Google Scholar 

  • 31.

    Unlu, I., Faraji, A., Wang, Y., Rochlin, I. & Gaugler, R. Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates. Sci. Rep. 11, 14119. https://doi.org/10.1038/s41598-021-93492-2 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 32.

    Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184. https://doi.org/10.4269/ajtmh.2010.09-0373 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Dongus, S. et al. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Int. J. Health Geogr. 6, 37. https://doi.org/10.1186/1476-072X-6-37 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Ferguson, H. M. et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 7, e1000303. https://doi.org/10.1371/journal.pmed.1000303 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Gu, W., Utzinger, J. & Novak, R. J. Habitat-based larval interventions: A new perspective for malaria control. Am. J. Trop. Med. Hyg. 78, 2–6 (2008).

    Article 

    Google Scholar 

  • 36.

    Cross, D. E. et al. Geographically extensive larval surveys reveal an unexpected scarcity of primary vector mosquitoes in a region of persistent malaria transmission in western Zambia. Parasit Vectors 14, 91. https://doi.org/10.1186/s13071-020-04540-1 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Orba, Y. et al. First isolation of West Nile virus in Zambia from mosquitoes. Transbound Emerg. Dis. 65, 933–938. https://doi.org/10.1111/tbed.12888 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Wastika, C. E. et al. Discoveries of exoribonuclease-resistant structures of insect-specific flaviviruses isolated in Zambia. Viruses https://doi.org/10.3390/v12091017 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Hulsman, P., Savenije, H. H. G. & Hrachowitz, M. Satellite-based drought analysis in the Zambezi River Basin: Was the 2019 drought the most extreme in several decades as locally perceived?. J. Hydrol. Reg. Stud. https://doi.org/10.1016/j.ejrh.2021.100789 (2021).

    Article 

    Google Scholar 

  • 40.

    Hardy, A. et al. Automatic detection of open and vegetated water bodies using Sentinel 1 to map African malaria vector mosquito breeding habitats. Remote Sensing 11, 593. https://doi.org/10.3390/rs11050593 (2019).

    Article 
    ADS 

    Google Scholar 

  • 41.

    Del Rio, T., Groot, J. C. J., DeClerck, F. & Estrada-Carmona, N. Integrating local knowledge and remote sensing for eco-type classification map in the Barotse Floodplain, Zambia. Data Brief 19, 2297–2304. https://doi.org/10.1016/j.dib.2018.07.009 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Timberlake, J. Biodiversity of the Zambezi Basin wetlands: Review and preliminary assessment of available information. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1997).

  • 43.

    Turpie, J., Smith, B., Emerton, L. & Barnes, J. Economic valuation of the Zambezi basin wetlands. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1999).

  • 44.

    Ciubotariu, I. I. et al. Genetic diversity of Anopheles coustani in high malaria transmission foci in southern and central Africa. J. Med. Entom. 57, 1–11. https://doi.org/10.1093/jme/tjaa132 (2020).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Jones, C. M. Vector biology and genomics of Anopheles in southern and central Africa PhD thesis, John Hopkins Bloomberg School of Public Health, (2019).

  • 46.

    Stephen, A., Nicholas, K., Busula, A. O., Webale, M. K. & Omukunda, E. Detection of Plasmodium sporozoites in Anopheles coustani s.l; a hindrance to malaria control strategies in highlands of western Kenya. bioRxiv, https://doi.org/10.1101/2021.02.10.430589 (2021).

  • 47.

    Tedrow, R. E. et al. Anopheles mosquito surveillance in Madagascar reveals multiple blood feeding behavior and Plasmodium infection. PLoS Negl. Trop. Dis. 13, e0007176. https://doi.org/10.1371/journal.pntd.0007176 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Taye, B., Lelisa, K., Emana, D., Asale, A. & Yewhalaw, D. Seasonal dynamics, longevity, and biting activity of anopheline mosquitoes in southwestern Ethiopia. J. Insect. Sci. https://doi.org/10.1093/jisesa/iev150 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Sikaala, C. H. et al. A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J. 13, 225. https://doi.org/10.1186/1475-2875-13-225 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    De Meillon, B. The anophelini of the Ethiopian geographical region. Publ. South Afr. Inst. Med. Res. 49, 1–272 (1947).

    Google Scholar 

  • 51.

    Gillies, M. T. & De Meillon, B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ. South Afr. Inst. Med. Res. 54, 1–343 (1968).

    Google Scholar 

  • 52.

    Dida, G. O. et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect. Dis. Poverty 7, 2. https://doi.org/10.1186/s40249-017-0385-0 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Njoroge, M. M. et al. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya. Parasit Vectors 10, 18. https://doi.org/10.1186/s13071-016-1957-8 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Kibret, S. et al. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop. Med. Int. Health 15, 41–50. https://doi.org/10.1111/j.1365-3156.2009.02423.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Coetzee, M. Anopheles crypticus, new species from South Africa is distinguished from Anopheles coustani (Diptera: Culicidae). Mosq. Syst. 26, 125–131 (1994).

    Google Scholar 

  • 56.

    Gillies, M. T. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ. South Afr. Inst. Med. Res. 55, 1–143 (1987).

    Google Scholar 

  • 57.

    Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 19, 70. https://doi.org/10.1186/s12936-020-3144-9 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Carter, T. E., Yared, S., Hansel, S., Lopez, K. & Janies, D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 18, 135. https://doi.org/10.1186/s12936-019-2768-0 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Degefa, T. et al. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J. 16, 443. https://doi.org/10.1186/s12936-017-2098-z (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Nepomichene, T. N. J. J., Tata, E. & Boyer, S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malaria J. 14, 475. https://doi.org/10.1186/s12936-015-1004-9 (2015).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Finney, M. et al. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J. 20, 25. https://doi.org/10.1186/s12936-020-03539-4 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Mwangangi, J. M. et al. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit Vectors 6, 114. https://doi.org/10.1186/1756-3305-6-114 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Hoffman, J. E. et al. Phylogenetic complexity of morphologically identified Anopheles squamosus in southern Zambia. Insects 12, 146. https://doi.org/10.3390/insects12020146 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Fornadel, C. M., Norris, L. C., Franco, V. & Norris, D. E. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector Borne Zoonotic Dis. 11, 1173–1179. https://doi.org/10.1089/vbz.2010.0082 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Wilkes, T. J., Matola, Y. G. & Charlwood, J. D. Anopheles rivulorum, a vector of human malaria in Africa. Med. Vet. Entomol. 10, 108–110. https://doi.org/10.1111/j.1365-2915.1996.tb00092.x (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Majambere, S., Fillinger, U., Sayer, D. R., Green, C. & Lindsay, S. W. Spatial distribution of mosquito larvae and the potential for targeted larval control in The Gambia. Am. J. Trop. Med. Hyg. 79, 19–27 (2008).

    Article 

    Google Scholar 

  • 67.

    Thomas, C. J., Cross, D. E. & Bogh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE https://doi.org/10.1371/journal.pone.0068679 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Hardy, A. J. et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS ONE 8, e81931. https://doi.org/10.1371/journal.pone.0081931 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 69.

    Kent, R. J., Thuma, P. E., Mharakurwa, S. & Norris, D. E. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am. J. Trop. Med. Hyg. 76, 267–274 (2007).

    Article 

    Google Scholar 

  • 70.

    Imbahale, S. S. et al. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 10, 81. https://doi.org/10.1186/1475-2875-10-81 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Bayoh, M. N. et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 9, 62. https://doi.org/10.1186/1475-2875-9-62 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Mawejje, H. D. et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 20, 138. https://doi.org/10.1186/s12936-021-03675-5 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Stevenson, J. C. et al. Spatio-temporal heterogeneity of malaria vectors in northern Zambia: Implications for vector control. Parasit Vectors 9, 510. https://doi.org/10.1186/s13071-016-1786-9 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Dabire, K. R. et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J. Vector Ecol. 33, 70–75. https://doi.org/10.3376/1081-1710(2008)33[70:ytyasv]2.0.co;2 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 75.

    Tuno, N., Githeko, A., Yan, G. & Takagi, M. Interspecific variation in diving activity among Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles (Diptera: Culicidae) larvae. J. Vector Ecol. 32, 112–117. https://doi.org/10.3376/1081-1710(2007)32[112:ividaa]2.0.co;2 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 76.

    Nambunga, I. H. et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 19, 219. https://doi.org/10.1186/s12936-020-03295-5 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar J. 8, 123. https://doi.org/10.1186/1475-2875-8-123 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Kweka, E. J. et al. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS ONE 7, e52084. https://doi.org/10.1371/journal.pone.0052084 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 79.

    Libanda, B. & Ngonga, C. Projection of frequency and intensity of extreme precipitation in Zambia: a CMIP5 study. Climate Res. 76, 59–72. https://doi.org/10.3354/cr01528 (2018).

    Article 
    ADS 

    Google Scholar 

  • 80.

    Zimba, H. et al. Assessment of trends in inundation extent in the Barotse Floodplain, upper Zambezi River Basin: A remote sensing-based approach. J. Hydrol. Reg. Stud. 15, 149–170. https://doi.org/10.1016/j.ejrh.2018.01.002 (2018).

    Article 

    Google Scholar 

  • 81.

    Hamududu, B. H. & Killingtveit, A. Hydropower production in future climate scenarios; the case for the Zambezi River. Energies https://doi.org/10.3390/en9070502 (2016).

    Article 

    Google Scholar 

  • 82.

    IUCN. Barotse Floodplain, Zambia: Local economic dependence on wetland resources. IUCN – The World Conservation Union, Harare, Zimbabwe (2003).

  • 83.

    Moore, A. E., Cotterill, F.P.D., Main, M.P.L., Williams, H.B. in Large Rivers: Geomorphology and Management (ed Avijit Gupta) Ch. 15, (Wiley, 2007).

  • 84.

    Heyden, C. J. V. D. The hydrology and hydrogeology of dambos: a review. Prog. Phys. Geog. 28, 544–564. https://doi.org/10.1191/0309133304pp424oa (2004).

    Article 

    Google Scholar 

  • 85.

    Derua, Y. A. et al. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malaria J. https://doi.org/10.1186/1475-2875-11-188 (2012).

    Article 

    Google Scholar 

  • 86.

    Kröckel, U., Rose, A., Eiras, Á. E. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238. https://doi.org/10.2987/8756-971x(2006)22[229:Ntfsoa]2.0.Co;2 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 87.

    Gama, R. A., Silva, I. M., Geier, M. & Eiras, A. E. Development of the BG-Malaria trap as an alternative to human-landing catches for the capture of Anopheles darlingi. Mem. Inst. Oswaldo Cruz 108, 763–771. https://doi.org/10.1590/0074-0276108062013013 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Ribeiro, J. M., Seulu, F., Abose, T., Kidane, G. & Teklehaimanot, A. Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bull. World Health Organ. 74, 299–305 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Russell, T. L. et al. Geographic coincidence of increased malaria transmission hazard and vulnerability occurring at the periphery of two Tanzanian villages. Malar J. 12, 24. https://doi.org/10.1186/1475-2875-12-24 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Smith, D. L., Dushoff, J. & McKenzie, F. E. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2, e368. https://doi.org/10.1371/journal.pbio.0020368 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Midega, J. T. et al. Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat. Commun. 3, 674. https://doi.org/10.1038/ncomms1672 (2012).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 92.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Singh, B. et al. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am. J. Trop. Med. Hyg. 60, 687–692. https://doi.org/10.4269/ajtmh.1999.60.687 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 94.

    QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2021).

  • 95.

    Postma, M. & Goedhart, J. PlotsOfData – A web app for visualizing data together with their summaries. PLoS Biol 17, e3000202. https://doi.org/10.1371/journal.pbio.3000202 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    IBM SPSS Statistics for Windows, Version 25.0 (Armonk, NY, 2017).

  • 97.

    Rita, H. & Komonen, A. Odds ratio: an ecologically sound tool to compare proportions. Ann. Zool. Fenn. 45, 66–72. https://doi.org/10.5735/086.045.0106 (2008).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Resilience of countries to COVID-19 correlated with trust

    Understanding air pollution from space