in

The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

  • 1.

    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. 108, 17905–17909 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 2.

    Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & Garcia-Herrera, R. The Hot Summer of 2010: Redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 3.

    Fischer, E. M. & Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 41, 547–554 (2014).

    ADS 

    Google Scholar 

  • 4.

    Della-Marta, P. M., Haylock, M. R., Luterbacher, J. & Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).

    ADS 

    Google Scholar 

  • 5.

    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Chang. 8, 469–477 (2018).

    ADS 

    Google Scholar 

  • 6.

    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant, Cell Environ. 38, 1699–1712 (2015).

    Google Scholar 

  • 7.

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 8.

    Steppe, K., Sterck, F. & Deslauriers, A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20, 335–343 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Peters, R. L. et al. Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. N. Phytol. 229, 213–229 (2021).

    CAS 

    Google Scholar 

  • 10.

    Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).

    Google Scholar 

  • 11.

    Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Martínez‐Vilalta, J., Anderegg, W. R. L., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants. N. Phytol. 223, 22–32 (2019).

    Google Scholar 

  • 13.

    Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage? N. Phytol. 211, 839–849 (2016).

    Google Scholar 

  • 14.

    Dietrich, L., Zweifel, R. & Kahmen, A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 38, 941–952 (2018).

    PubMed 

    Google Scholar 

  • 15.

    Zweifel, R. et al. Why trees grow at night. N. Phytol. 231, 2174–2185 (2021).

    Google Scholar 

  • 16.

    Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).

    ADS 

    Google Scholar 

  • 17.

    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 18.

    Peters, W., Bastos, A., Ciais, P. & Vermeulen, A. A historical, geographical, and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190505 (2020).

    Google Scholar 

  • 19.

    Albergel, C. et al. Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sens. 11, 520 (2019).

    ADS 

    Google Scholar 

  • 20.

    Smith, N. E. et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern. Eur. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190509 (2020).

    CAS 

    Google Scholar 

  • 21.

    Brun, P. et al. Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Glob. Chang. Biol. 26, 7021–7035 (2020).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 22.

    Ramonet, M. et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190513 (2020).

    CAS 

    Google Scholar 

  • 23.

    Bastos, A. et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).

    CAS 

    Google Scholar 

  • 24.

    Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).

    CAS 
    ADS 

    Google Scholar 

  • 25.

    Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).

    Google Scholar 

  • 26.

    Rita, A. et al. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 26, 851–863 (2020).

    PubMed 
    ADS 

    Google Scholar 

  • 27.

    Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3, 203–207 (2013).

    ADS 

    Google Scholar 

  • 28.

    Larysch, E., Stangler, D. F., Nazari, M., Seifert, T. & Kahle, H.-P. Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests 12, 75 (2021).

    Google Scholar 

  • 29.

    Rohner, B., Kumar, S., Liechti, K., Gessler, A. & Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 120, 106903 (2021).

    Google Scholar 

  • 30.

    Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M. & Wilmking, M. Tree growth at the end of the 21st century – the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 15, 074022 (2020).

    ADS 

    Google Scholar 

  • 31.

    Kowalska, N. et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190518 (2020).

    CAS 

    Google Scholar 

  • 32.

    Zweifel, R. et al. Baumwasserdefizite erreichten im Sommer 2018 Höchstwerte–war das aus dem All erkennbar. Schweiz Z. Forstwes. 171, 302–305 (2020).

    Google Scholar 

  • 33.

    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).

    PubMed 
    ADS 

    Google Scholar 

  • 35.

    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytol. 210, 459–470 (2016).

    CAS 

    Google Scholar 

  • 36.

    Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).

    CAS 

    Google Scholar 

  • 37.

    Zweifel, R. et al. Determinants of legacy effects in pine trees – implications from an irrigation‐stop experiment. N. Phytol. 227, 1081–1096 (2020).

    CAS 

    Google Scholar 

  • 38.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 39.

    Zweifel, R., Zimmermann, L. & Newbery, D. M. Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiol. 25, 147–156 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 209, 123–136 (2016).

    CAS 

    Google Scholar 

  • 41.

    Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytol. 221, 693–705 (2019).

    Google Scholar 

  • 42.

    Poyatos, R., Aguadé, D. & Martínez-Vilalta, J. Below-ground hydraulic constraints during drought-induced decline in Scots pine. Ann. Sci. 75, 100 (2018).

    Google Scholar 

  • 43.

    Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 195, 48–53 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Brodribb, T. J., McAdam, S. A. M., Jordan, G. J. & Martins, S. C. V. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. U.S.A 111, 14489–14493 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 45.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 46.

    Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 24, 2390–2402 (2018).

    PubMed 
    ADS 

    Google Scholar 

  • 47.

    Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 10, 1091–1095 (2020).

    ADS 

    Google Scholar 

  • 48.

    Leuzinger, S., Zotz, G., Asshoff, R. & Korner, C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 25, 641–650 (2005).

    PubMed 

    Google Scholar 

  • 49.

    Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N. & Kahmen, A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol. 36, 1508–1519 (2016).

    PubMed 

    Google Scholar 

  • 50.

    Rosengren, U. et al. Functional biodiversity aspects on the nutrient sustainability in forests-Importance of root distribution. J. Sustain. 21, 77–100 (2006).

    Google Scholar 

  • 51.

    Salomón, R. L., Limousin, J.-M., Ourcival, J.-M., Rodríguez-Calcerrada, J. & Steppe, K. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant. Cell Environ. 40, 1379–1391 (2017).

    PubMed 

    Google Scholar 

  • 52.

    Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. N. Phytol. 224, 1544–1556 (2019).

    Google Scholar 

  • 53.

    Guerrero-Ramírez, N. R. et al. Global root traits (GRooT). Database Glob. Ecol. Biogeogr. 30, 25–37 (2021).

    Google Scholar 

  • 54.

    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    PubMed 
    ADS 

    Google Scholar 

  • 55.

    van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Körner, C. No need for pipes when the well is dry—a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).

    PubMed 

    Google Scholar 

  • 57.

    Walthert, L. et al. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 753, 141792 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 58.

    Preisler, Y., Tatarinov, F., Grünzweig, J. M. & Yakir, D. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant. Cell Environ. 44, 1315–1328 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Poyatos, R. et al. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).

    ADS 

    Google Scholar 

  • 60.

    Steppe, K., von der Crone, J. S. & De Pauw, D. J. W. TreeWatch.net: A water and carbon monitoring and modeling network to assess instant tree hydraulics and carbon status. Front. Plant Sci. 7, 993 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Sass-Klaassen, U. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1–6 (2016).

    Google Scholar 

  • 62.

    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).

    PubMed 
    ADS 

    Google Scholar 

  • 63.

    Sparks, A. H., Hengl, T. & Nelson, A. GSODR: Global summary daily weather data in R. J. Open Source Softw. 2, 177 (2017).

    ADS 

    Google Scholar 

  • 64.

    Muñoz-Sabater, J. et al. ERA5-Land: An improved version of the ERA5 reanalysis land component. in Joint ISWG and LSA-SAF Workshop IPMA. 26–28 (2018).

  • 65.

    Granier, A. et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. Meteorol. 143, 123–145 (2007).

    Google Scholar 

  • 66.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).

    Google Scholar 

  • 68.

    Frich, P. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).

    ADS 

    Google Scholar 

  • 69.

    Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, 1–22 (2006).

    Google Scholar 

  • 70.

    Knüsel, S., Peters, R. L., Haeni, M., Wilhelm, M. & Zweifel, R. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12, 765 (2021).

    Google Scholar 

  • 71.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  • 72.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 73.

    R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019).


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions