Buxó, R. & Piqué, R. Arqueobotánica: Los Usos de las Plantas en la Península Ibérica. (Grupo Planeta GBS, 2008).
Miller, N. F., Spengler, R. N. & Frachetti, M. Millet cultivation across Eurasia: Origins, spread, and the influence of seasonal climate. Holocene 26, 1566–1575 (2016).
Google Scholar
James, T. K., Rahman, A., McGill, C. R. & Trivedi, P. D. Biology and survival of broomcorn millet (Panicum miliaceum) seed. N. Z. Plant Prot. 64, 142–148 (2011).
Kirleis, W., Dal Corso, M. & Filipović, D. Millet and What Else?: The Wider Context of the Adoption of Millet Cultivation in Europe. vol. 14 (Sidestone Press, 2022).
Sherratt, A. Water, soil and seasonality in early cereal cultivation. World Archaeol. 11, 313–330 (1980).
Rachie, K. O. The Millets: Importance, Utilization and Outlook. 74 (International Crops Research Institute for the Semi-Arid Tropics, 1975).
Moreno-Larrazabal, A., Teira-Brión, A., Sopelana-Salcedo, I., Arranz-Otaegui, A. & Zapata, L. Ethnobotany of millet cultivation in the north of the Iberian Peninsula. Veg. Hist. Archaeobot. 24, 541–554 (2015).
Liu, L. et al. The origins of specialized pottery and diverse alcohol fermentation techniques in Early Neolithic China. Proc. Natl. Acad. Sci. USA 116, 12767–12774 (2019).
Google Scholar
Tereso, J. P. et al. Agriculture in NW Iberia during the Bronze Age: A review of archaeobotanical data. J. Archaeol. Sci. Rep. 10, 44–58 (2016).
Liu, C., Kong, Z. & Lang, S. D. A discussion on agricultural and botanical remains and the human ecology of Dadiwan site, in Chinese. Zhongyuan Wenwu 4, 25–29 (2004).
Zhao, Z. New archaeobotanic data for the study of the origins of agriculture in China. Curr. Anthropol. 52, S295–S306 (2011).
Crawford, G. W., Xuexiang, C., Fengshi, L. & Jianhua, W. A Preliminary analysis on plant remains of the Yuezhuang site in Changqing District, Jinan City, Shandong Province. Jianghan Archaeol. 2, 107–113 (2013).
Frachetti, M. D. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 2–38. https://doi.org/10.1086/663692 (2012).
Google Scholar
Ventresca Miller, A. R. & Makarewicz, C. A. Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe. Sci. Rep. 9, 8363 (2019).
Google Scholar
Jones, M. et al. Food globalisation in prehistory: The agrarian foundations of an interconnected continent. J. Br. Acad. 4, 73–87 (2016).
Spengler, R. et al. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proc. Biol. Sci. 281, 20133382 (2014).
Google Scholar
Hermes, T. R. et al. Early integration of pastoralism and millet cultivation in Bronze Age Eurasia. Proc. Biol. Sci. 286, 20191273 (2019).
Google Scholar
Frachetti, M. D., Spengler, R. N., Fritz, G. J. & Maryashev, A. N. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 84, 993–1010 (2010).
Motuzaite-Matuzeviciute, G., Richard, A. S., Hunt, H. V., Liu, X. & Jones, M. K. The early chronology of broomcorn millet (Panicum Miliaceum) in Europe. Antiquity 338, 1073–1085 (2013).
Filipović, D. et al. New AMS 14C dates track the arrival and spread of broomcorn millet cultivation and agricultural change in prehistoric Europe. Sci. Rep. 10, 13698 (2020).
Google Scholar
Hunt, H. V. et al. Millets across Eurasia: Chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg. Hist. Archaeobot. 17, 5–18 (2008).
Google Scholar
Brudenell, M., Fosberry, R., Phillips, T. & Kwiatkowska, M. Early cultivation of broomcorn millet in southern Britain: Evidence from the Late Bronze Age settlement site of Old Catton, Norfolk. Antiquity 2022, 1–6 (2022).
Weber, S. A. & Fuller, D. Q. Millets and their role in early agriculture. Pragdhara 18, 69–90 (2007).
Shelton, C. P. & White, C. E. The hand-pump flotation system: A new method for archaeobotanical recovery. J. Field Archaeol. 35, 316–326 (2010).
Barboff, M. Le millet au Portugal. In Millet– Hirse–Millet. Actes du Congres d’Aizenay (ed. Hörandner, E.) 113–122 (Grazer Beitra¨ge zur 731 europa¨ischen Ethnologie, 1995).
Reddy, S. N. If the Threshing Floor Could Talk: Integration of Agriculture and Pastoralism during the Late Harappan in Gujarat, India. J. Anthropol. Archaeol. 16, 162–187 (1997).
Dayakar Rao, B. et al. Nutritional and health benefits of millets. In ICAR_Indian Institute of Millets Research (IIMR), Rajendranagar, Hyderabad 112 (2017).
Mariotti-Lippi, M., Pisaneschi, L., Sarti, L., Lari, M. & Moggi-Cecchi, J. Insights into the Copper-Bronze Age diet in Central Italy: Plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). J. Archaeol. Sci. Rep. 15, 30–39 (2017).
Lu, H. et al. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum). PLoS ONE 4, e4448 (2009).
Google Scholar
Lucarini, G., Radini, A., Barton, H. & Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on ground stone tools from the Farafra Oasis, Egypt. Quat. Int. 410, 77–92 (2016).
Madella, M., Lancelotti, C. & García-Granero, J. J. Millet microremains—an alternative approach to understand cultivation and use of critical crops in Prehistory. Archaeol. Anthropol. Sci. 8, 17–28 (2016).
Yang, X. et al. From the modern to the archaeological: Starch grains from millets and their wild relatives in China. J. Archaeol. Sci. 39, 247–254 (2012).
Lightfoot, E., Liu, X. & Jones, M. K. Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia. World Archaeol. 45, 574–623 (2013).
Armendariz, A. In Las cuevas sepulcrales del País Vasco. (Tesis Doctoral Inédita, Universidad del País Vasco-Euskal Herriko Unibertsitatea, 1992).
Vazquez-Varela, J. M. El cultivo del mijo, (Panicum miliaceum, L.), en la cultura castreña del noroeste de la peninsula iberica. Cuad. Estud. Gallegos 1, 65–73 (1994).
Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2021).
Google Scholar
Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).
Google Scholar
Arias, P. & Armendariz, A. Aproximación a la Edad del Bronce en la región cantábrica. A Idade do Bronce en Galicia: novas perspectivas. Cadernos Semin. Sargadelos 77, 47–80 (1998).
DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).
Google Scholar
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).
Nehlich, O. & Richards, M. P. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 1, 59–75 (2009).
Cristiani, E., Radini, A., Edinborough, M. & Borić, D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc. Natl. Acad. Sci. USA 113, 10298–10303 (2016).
Google Scholar
Henry, A. G. & Piperno, D. R. Using plant microfossils from dental calculus to recover human diet: A case study from Tell al-Raqā’I, Syria. J. Archaeol. Sci. 35, 1943–1950 (2008).
Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).
Google Scholar
Hedges, R. E. M. & Reynard, L. M. Nitrogen isotopes and the trophic level of humans in archaeology. J. Archaeol. Sci. 34, 1240–1251 (2007).
López-Costas, O., Müldner, G. & Martínez-Cortizas, A. Diet and lifestyle in Bronze Age Northwest Spain: The collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218 (2015).
Jones, J. R. et al. Investigating prehistoric diet and lifeways of early farmers in central northern Spain (3000–1500 CAL BC) using stable isotope techniques. Archaeol. Anthropol. Sci. 11, 3979–3994 (2019).
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).
Google Scholar
O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).
Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216, 1131–1132 (1982).
Google Scholar
de Blas Cortina, M. Á. De la caverna al lugar fortificado: Una mirada a la edad del bronce en el territorio Astur-Cántabro. Quad. Prehist. Arqueol. Castelló 29, 105–134 (2011).
Nehlich, O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci. Rev. 142, 1–17 (2015).
Google Scholar
Richards, M. P., Fuller, B. T. & Hedges, R. E. M. Sulphur isotopic variation in ancient bone collagen from Europe: Implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth Planet. Sci. Lett. 191, 185–190 (2001).
Google Scholar
González-Rabanal, B. et al. Diet, mobility and death of Late Neolithic and Chalcolithic groups of the Cantabrian Region (northern Spain). A multidisciplinary approach towards studying the Los Avellanos I and II burial caves. J. Archaeol. Sci. Rep. 34, 1–13 (2020).
McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 101, 17593–17598 (2004).
Google Scholar
Fernández-Crespo, T., Ordoño, J., Bogaard, A., Llanos, A. & Schulting, R. A snapshot of subsistence in Iron Age Iberia: The case of La Hoya village. J. Archaeol. Sci. Rep. 28, 1–10 (2019).
Hedges, R. E. M. On bone collagen?apatite-carbonate isotopic relationships. Int. J. Osteoarchaeol. 13, 66–79 (2003).
Arias, P. Determinaciones de isótopos estables en restos humanos de la región Cantábrica. Aportación al estudio de la dieta de las poblaciones del Mesolítico y el Neolítico. Munibe Antropol.-Arkeol. 57, 359–374 (2005).
Palencia-Madrid, L. et al. Ancient mitochondrial lineages support the prehistoric maternal root of Basques in Northern Iberian Peninsula. Eur. J. Hum. Genet. 25, 631–636 (2017).
Google Scholar
Fernández-Crespo, T., Mujika, J. A. & Ordoño, J. Aproximación al patrón alimentario de los inhumados en la cista de la Edad del Bronce de Ondarre (Aralar, Guipúzcoa) a través del análisis de isótopos estables de carbono y nitrógeno sobre colágeno óseo. Trab. Prehist. 73, 325–334 (2016).
Higuero Pliego, A. In Análisis Isotópico de Carbono y Nitrógeno en Secuencias de Dentina y de Estroncio en Esmalte Procedente de Restos Humanos Prehistóricos de la Cueva de Los Canes (Cabrales, Asturias). (Tesis Doctoral Inédita, Universidad de Cantabria, 2020).
Teira-Brión, A. Traditional millet cultivation in the Iberian Peninsula: Ethnoarchaeological reflections through the lens of social relations and economic concerns. In (eds. Kirleis, W. et al.) Millet and What Else?: The Wider Context of the Adoption of Millet Cultivation in Europe vol. 14 263–278 (Sidestone Press, 2022).
Pechenkina, E. A., Ambrose, S. H., Xiaolin, M. & Benfer, R. A. Reconstructing northern Chinese Neolithic subsistence practices by isotopic analysis. J. Archaeol. Sci. 32, 1176–1189 (2005).
Hu, Y. et al. Palaeodietary study of Sanxingcun Site, Jintan, Jiangsu. Chin. Sci. Bull. 52, 660–664 (2007).
Motuzaite-Matuzeviciute, G., Ananyevskaya, E., Sakalauskaite, J., Soltobaev, O. & Tabaldiev, K. The integration of millet into the diet of Central Asian populations in the third millennium BC. Antiquity 96, 560–574 (2022).
Herrscher, E. et al. The origins of millet cultivation in the Caucasus: Archaeological and archaeometric approaches. Préhistoires Méditerr. 2018, 6 (2018).
Tafuri, M. A., Craig, O. E. & Canci, A. Stable isotope evidence for the consumption of millet and other plants in Bronze Age Italy. Am. J. Phys. Anthropol. 139, 146–153 (2009).
Google Scholar
Varalli, A., Moggi-Cecchi, J., Moroni, A. & Goude, G. Dietary variability during bronze age in central Italy: First results. Int. J. Osteoarchaeol. 26, 431–446 (2016).
Goude, G., Rey, L., Toulemonde, F., Cervel, M. & Rottier, S. Dietary changes and millet consumption in northern France at the end of Prehistory: Evidence from archaeobotanical and stable isotope data. Environ. Archaeol. 22, 268–282 (2017).
Fernández-Crespo, T., Ordoño, J., Llanos, A. & Schulting, R. J. Make a desert and call it peace: Massacre at the Iberian Iron Age village of La Hoya. Antiquity 94, 1245–1262 (2020).
Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA 106, 7367–7372 (2009).
Google Scholar
Li, M. et al. Starch grains from dental calculus reveal ancient plant foodstuffs at Chenqimogou site, Gansu Province. Sci. China Earth Sci. 53, 694–699 (2010).
Google Scholar
Zhang, J., Lu, H., Wu, N., Yang, X. & Diao, X. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and Green Foxtail (Setaria viridis). PLoS ONE 6, e19726 (2011).
Google Scholar
Ge, Y. et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol. Anthropol. Sci. 10, 61–73 (2018).
Tao, D., Zhang, G., Zhou, Y. & Zhao, H. Investigating wheat consumption based on multiple evidences: Stable isotope analysis on human bone and starch grain analysis on dental calculus of humans from the Laodaojing cemetery, Central Plains, China. Int. J. Osteoarchaeol. 30, 594–606 (2020).
Bucchi, A., Burguet-Coca, A., Expósito, I., Aceituno-Bocanegra, F. J. & Lozano, M. Comparisons between methods for analyzing dental calculus samples from El Mirador cave (Sierra de Atapuerca, Spain). Archaeol. Anthropol. Sci. 11, 6305–6314 (2019).
Cristiani, E. et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife 10, 1–37 (2021).
Bocanegra, F. J. A. & Sáez, J. A. L. Caracterización morfológica de almidones de los géneros Triticum y Hordeum en la Península Ibérica. Trabprehist 69, 332–348 (2012).
Hardy, K., Buckley, S. & Copeland, L. Pleistocene dental calculus: Recovering information on Paleolithic food items, medicines, paleoenvironment and microbes. Evol. Anthropol. 27, 234–246 (2018).
Google Scholar
López-Dóriga, I. In The use of plants during the Mesolithic and the Neolithic in the Atlantic coast of the Iberian peninsula. (Tesis Doctoral Inédita, Universidad de Cantabria, 2016).
Nava, A. et al. Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP). Sci. Rep. 11, 1–14 (2021).
Pyankov, V. I., Ziegler, H., Akhani, H., Deigele, C. & Lüttge, U. European plants with C4 photosynthesis: Geographical and taxonomic distribution and relations to climate parameters. Bot. J. Linn. Soc. 163, 283–304 (2010).
Zapata, L. In La explotación de los recursos vegetales y el origen de la agricultura en el País Vasco. (Tesis Doctora Inédita, Universidad del País Vasco, 2002).
Figueiral, I., de-Jesus-Sanches, M. & Cardoso, J. L. Crasto de Palheiros (Murça, NE Portugal, 3rd – 1st millennium BC): From archaeological remains to ordinary life. Estudos Quat. 17, 13–28 (2017).
Bettencourt, A. M. S. O povoado da Idade do Bronze da Sola, Braga, norte de Portugal. Cadernos Arqueol. 9, 29–44 (2000).
Jesus, A., Tereso, J. P. & Gaspar, R. Interpretative trajectories towards the understanding of negative features using Terraço das Laranjeiras Bronze Age site as a case study. J. Archaeol. Sci. Rep. 30, 1–14 (2020).
Alonso-Martínez, N. Registro arqueobotánico de Cataluña occidental durante el II y I milenio a.n.e.. Complutum 11, 221–238 (2000).
Tarongi-Chavarri, M. Análisis comparativo de los estudios carpológicos de la Depresión del Ebro durante el III y I milenio a. C. Un estado de la cuestión. Rev. d’arqueologia Ponent 27, 41–59 (2017).
Stika, H.-P. & Heiss, A. G. Plant cultivation in the Bronze Age. In The Oxford Handbook of the European Bronze Age (eds. Fokkens, H. & Harding, A.) 348–369 (2013).
González-y-Fernández-Valles, J. M. Temas de toponimia asturiana. Archivum 21, 121–140 (1971).
de Carvallo, L. A. In Antiguedades y Cosas Memorables del Principado de Asturias. (Julian de Paredes, 1695).
MacKinnon, A. T., Passalacqua, N. V. & Bartelink, E. J. Exploring diet and status in the Medieval and Modern periods of Asturias, Spain, using stable isotopes from bone collagen. Archaeol. Anthropol. Sci. 11, 3837–3855. https://doi.org/10.1007/s12520-019-00819-2 (2019).
Google Scholar
Renfrew, J. M. Palaeoethnobotany: The Prehistoric Food Plants of the Near East and Europe (Columbia University Press, 1973).
Bronk Ramsey, C. Bayesian Analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Google Scholar
Richards, M. P. & Hedges, R. E. M. Stable isotope evidence for similarities in the types of marine foods used by late mesolithic humans at sites along the Atlantic Coast of Europe. J. Archaeol. Sci. 26, 717–722 (1999).
Sabin, S. & James, A. In Dental Calculus Field-Sampling Protocol (Sabin version) v2 (protocols.io.bqecmtaw). (2020). https://doi.org/10.17504/protocols.io.bqecmtaw.
Cristiani, E. et al. Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean. Sci. Rep. 8, 8147 (2018).
Google Scholar
Fiorin, E. et al. Combining dental calculus with isotope analysis in the Alps: New evidence from the Roman and medieval cemeteries of Lamon. Italy. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.022 (2021).
Google Scholar
Source: Ecology - nature.com