in

The critical benefits of snowpack insulation and snowmelt for winter wheat productivity

  • IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Sindelar, A. J. et al. Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations. GCB Bioenergy 9, 508–524 (2017).

    CAS 

    Google Scholar 

  • Stöckle, C. O. et al. Evaluating opportunities for an increased role of winter crops as adaptation to climate change in dryland cropping systems of the U.S. Inland Pacific Northwest. Clim. Change 146, 247–261 (2018).

    Google Scholar 

  • Williams, C. M., Henry, H. A. L. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).

    Google Scholar 

  • Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).

    Google Scholar 

  • Marcillo, G. S. & Miguez, F. E. Corn yield response to winter cover crops: an updated meta-analysis. J. Soil Water Conserv. 72, 226–239 (2017).

    Google Scholar 

  • Zhu, L., Ives, A. R., Zhang, C., Guo, Y. & Radeloff, V. C. Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Clim. Change 9, 886–893 (2019).

    Google Scholar 

  • Mankin, J. S. & Diffenbaugh, N. S. Influence of temperature and precipitation variability on near-term snow trends. Clim. Dynam. 45, 1099–1116 (2015).

    Google Scholar 

  • Zhu, L., Radeloff, V. C. & Ives, A. R. Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sens. Environ. 191, 168–178 (2017).

    Google Scholar 

  • Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl Acad. Sci. USA 117, 19753–19759 (2020).

    CAS 

    Google Scholar 

  • Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Google Scholar 

  • Trnka, M. et al. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643 (2014).

    Google Scholar 

  • Li, D., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).

    Google Scholar 

  • Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).

    Google Scholar 

  • Acevedo, E., Silva, P. & Silva, H. in Bread Wheat: Improvement and Production (eds Curtis, B. C. et al.) 39–70 (FAO Plant Production and Protection, 2002).

  • Baker, J. T., Pinter, P. J., Reginato, R. J. & Kanemasu, E. T. Effects of temperature on leaf appearance in spring and winter wheat cultivars. Agron. J. 78, 605–613 (1986).

    Google Scholar 

  • Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

    CAS 

    Google Scholar 

  • Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

    Google Scholar 

  • Talukder, A. S. M. H. M., McDonald, G. K. & Gill, G. S. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Res. 160, 54–63 (2014).

    Google Scholar 

  • Farooq, M., Bramley, H., Palta, J. A. & Siddique, K. H. M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30, 491–507 (2011).

  • Cuadra, S. V., Kimball, B. A., Boote, K. J., Suyker, A. E. & Pickering, N. Energy balance in the DSSAT-CSM-CROPGRO model. Agric. For. Meteorol. 297, 108241 (2021).

    Google Scholar 

  • Harder, P., Helgason, W. D. & Pomeroy, J. W. Modeling the snowpack energy balance during melt under exposed crop stubble. J. Hydrometeorol. 19, 1191–1214 (2018).

    Google Scholar 

  • Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A. & Nuttall, J. G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res. 171, 109–119 (2015).

    Google Scholar 

  • Wang, W. et al. Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere 10, 1721–1737 (2016).

    Google Scholar 

  • Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).

    Google Scholar 

  • Pullens, J. W. M. et al. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 272–273, 30–39 (2019).

    Google Scholar 

  • Chopra, R. et al. Identification and stacking of crucial traits required for the domestication of pennycress. Nat. Food 1, 84–91 (2020).

    Google Scholar 

  • Crews, T. E., Carton, W. & Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 1, e11 (2018).

  • Harkness, C. et al. Adverse weather conditions for UK wheat production under climate change. Agric. Meteorol. 282–283, 107862 (2020).

    Google Scholar 

  • Schierhorn, F., Hofmann, M., Gagalyuk, T., Ostapchuk, I. & Müller, D. Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Clim. Change 169, 39 (2021).

  • Michel, S. et al. Improving and maintaining winter hardiness and frost tolerance in bread wheat by genomic selection. Front. Plant Sci. 10, 1195 (2019).

    Google Scholar 

  • Mahfoozi, S., Limin, A. E. & Fowler, D. B. Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Sci. 41, 1006–1011 (2001).

    Google Scholar 

  • Dutra, E. et al. An improved snow scheme for the ECMWF land surface model: description and offline validation. J. Hydrometeorol. 11, 899–916 (2010).

    Google Scholar 

  • Ge, Y. & Gong, G. Land surface insulation response to snow depth variability. J. Geophys. Res. Atmos. 115, 8107 (2010).

    Google Scholar 

  • Hunt, J. R. et al. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Change 9, 244–247 (2019).

    Google Scholar 

  • Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020) .

  • Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).

    Google Scholar 

  • Shimoda, S. et al. Effects of snow compaction ‘yuki-fumi’ on soil frost depth and volunteer potato control in potato–wheat rotation system in Hokkaido. Plant Prod. Sci. 24, 186–197 (2021).

    CAS 

    Google Scholar 

  • Luojus, K. et al. GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset. Sci. Data 8, 163 (2021)..

  • IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions Version 1 (NSIDC, 2008).

  • Jing, Q. et al. Assessing the options to improve regional wheat yield in Eastern Canada using the CSM–CERES–wheat model. Agron. J. 109, 510–523 (2017).

    Google Scholar 

  • Vogel, F. A. & Bange, G. A. Understanding USDA Crop Forecasts (USDA, 1999).

  • Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Google Scholar 

  • Brown, R. D. & Brasnett, B. Daily Snow Depth Analysis Data Version 1 (Canadian Meteorological Centre, 2010).

  • Brasnett, B. A global analysis of snow depth for numerical weather prediction. J. Appl. Meteorol. Climatol. 38, 726–740 (1999).

    Google Scholar 

  • Toure, A. M., Reichle, R. H., Forman, B. A., Getirana, A. & De Lannoy, G. J. M. Assimilation of MODIS snow cover fraction observations into the NASA catchment land surface model. Remote Sens. 10, 316 (2018).

    Google Scholar 

  • Snauffer, A. M., Hsieh, W. W. & Cannon, A. J. Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. J. Hydrol. 541, 714–726 (2016).

    Google Scholar 

  • Census of Agriculture (USDA National Agricultural Statistics Service, 2017).

  • Skinner, D. Z. & Mackey, B. Freezing tolerance of winter wheat plants frozen in saturated soil. Field Crops Res. 113, 335–341 (2009).

    Google Scholar 

  • Lollato, R. P. et al. Climate-risk assessment for winter wheat using long-term weather data. Agron. J. 112, 2132–2151 (2020).

    Google Scholar 

  • Siebers, M. H. et al. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob. Change Biol. 21, 3114–3125 (2015).

    Google Scholar 

  • Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16 (2004).

    Google Scholar 

  • Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    Google Scholar 

  • Chen, M., Griffis, T. J., Baker, J., Wood, J. D. & Xiao, K. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 310–325 (2015).

    CAS 

    Google Scholar 

  • Larson, K. M. & Small, E. E. Daily Snow Depth and SWE from GPS Signal-to-Noise Ratios Version 1 (NSIDC, 2017).

  • Sturm, M. et al. Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeorol. 11, 1380–1394 (2010).

    Google Scholar 

  • McCabe, G. J. & Wolock, D. M. Recent declines in western U.S. snowpack in the context of twentieth-century climate variability. Earth Interact. 13, 1–15 (2009).

    Google Scholar 

  • Wu, X. et al. Uneven winter snow influence on tree growth across temperate China. Glob. Change Biol. 25, 144–154 (2019).

    Google Scholar 

  • Qiao, S. et al. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).

    Google Scholar 

  • Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    CAS 

    Google Scholar 

  • Xie, Y., Gibbs, H. K. & Lark, T. J. Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017. Earth Syst. Sci. Data 13, 5689–5710 (2021).

    Google Scholar 

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS 

    Google Scholar 

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  • Elliott, J. et al. The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015).

    Google Scholar 

  • Li, X., Shen, Z., Harri, A. & Coble, K. H. Comparing survey-based and programme-based yield data: implications for the U.S. Agricultural Risk Coverage-County programme. Geneva Pap. Risk Insur. Issues Pract. 45, 184–202 (2020).

    Google Scholar 

  • Hawkins, E., Osborne, T. M., Ho, C. K. & Challinor, A. J. Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric. Meteorol. 170, 19–31 (2013).

    Google Scholar 

  • Ho, C. K., Stephenson, D. B., Collins, M., Ferro, C. A. T. & Brown, S. J. Calibration strategies: a source of additional uncertainty in climate change projections. Bull. Am. Meteorol. Soc. 93, 21–26 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    More rain, less often

    MIT Energy Conference focuses on climate’s toughest challenges