in

The cyclic interaction between daytime behavior and the sleep behavior of laboratory dogs

  • 1.

    Luyster, F. S., Strollo, P. J., Zee, P. C. & Walsh, J. K. Sleep: A health imperative. Sleep 35, 727–734 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 3.

    Cirelli, C. & Tononi, G. Is sleep essential?. PLoS Biol. 6, 1605–1611 (2008).

    CAS 

    Google Scholar 

  • 4.

    Lesku, J. A., Roth, T. C. II., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. Am. Nat. 168, 441–453 (2006).

    PubMed 

    Google Scholar 

  • 5.

    Banks, S. & Dinges, D. F. Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 3, 519–528 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Tougeron, K. & Abram, P. K. An ecological perspective on sleep disruption. Am. Nat. 190, E55–E66 (2017).

    PubMed 

    Google Scholar 

  • 7.

    Vyazovskiy, V. V. & Tobler, I. The temporal structure of behaviour and sleep homeostasis. PLoS ONE 7, 1–11 (2012).

    Google Scholar 

  • 8.

    Tobler, I. Is sleep fundamentally different between mammalian species?. Behav. Brain Res. 69, 35–41 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Vyazovskiy, V. Sleep, recovery, and metaregulation: Explaining the benefits of sleep. Nat. Sci. Sleep 7, 171 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Vyazovskiy, V. V. & Delogu, A. NREM and REM sleep. Neuroscience 20, 203–219 (2014).

    Google Scholar 

  • 11.

    Orzeł-Gryglewska, J. Consequences of sleep deprivation. Int. J. Occup. Med. Environ. Health 23, 95–114 (2010).

    PubMed 

    Google Scholar 

  • 12.

    Meerlo, P., Sgoifo, A. & Suchecki, D. Restricted and disrupted sleep: Effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med. Rev. 12, 197–210 (2008).

    PubMed 

    Google Scholar 

  • 13.

    Touitou, Y., Reinberg, A. & Touitou, D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 173, 94–106 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Pires, G. N., Bezerra, A. G., Tufik, S. & Andersen, M. L. Effects of acute sleep deprivation on state anxiety levels: A systematic review and meta-analysis. Sleep Med. 68, 575–589 (2016).

    Google Scholar 

  • 15.

    Hudson, A. N., Van Dongen, H. P. A. A. & Honn, K. A. Sleep deprivation, vigilant attention, and brain function: A review. Neuropsychopharmacology https://doi.org/10.1038/s41386-019-0432-6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Tobler, I. & Sigg, H. Long-term motor activity recording of dogs and the effect of sleep deprivation. Experientia 42, 987–991 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Hänninen, L. Sleep and Rest in Calves Relationship To Welfare, Housing and Hormonal Activity (University of Helsinki, Helsinki, 2007).

    Google Scholar 

  • 18.

    Hsieh, W.-H.H. et al. Simulated shift work in rats perturbs multiscale regulation of locomotor activity. J. R. Soc. Interface 11, 20140318 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Storch, C., Höhne, A., Holsboer, F. & Ohl, F. Activity patterns as a correlate for sleep–wake behaviour in mice. J. Neurosci. Methods 133, 173–179 (2004).

    PubMed 

    Google Scholar 

  • 20.

    Hicks, R. A., Moore, J. D., Hayes, C., Phillips, N. & Hawkins, J. REM sleep deprivation increases aggressiveness in male rats. Physiol. Behav. 22, 1097–1100 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Pires, G. N., Tufik, S. & Andersen, M. L. Grooming analysis algorithm: Use in the relationship between sleep deprivation and anxiety-like behavior. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 41, 6–10 (2013).

    Google Scholar 

  • 22.

    Vorster, A. P. & Born, J. Sleep and memory in mammals, birds and invertebrates. Neurosci. Biobehav. Rev. 50, 103–119 (2015).

    PubMed 

    Google Scholar 

  • 23.

    Greives, T. J. et al. Costs of sleeping in: Circadian rhythms influence cuckoldry risk in a songbird. Funct. Ecol. 29, 1300–1307 (2015).

    Google Scholar 

  • 24.

    Fuchs, T., Haney, A., Jechura, T. J., Moore, F. R. & Bingman, V. P. Daytime naps in night-migrating birds: Behavioural adaptation to seasonal sleep deprivation in the Swainson’s thrush, Catharus ustulatus. Anim. Behav. 72, 951–958 (2006).

    Google Scholar 

  • 25.

    Klein, B. A., Klein, A., Wray, M. K., Mueller, U. G. & Seeley, T. D. Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc. Natl. Acad. Sci. U. S. A. 107, 22705–22709 (2010).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 26.

    Owczarczak-Garstecka, S. C. & Burman, O. H. P. P. Can sleep and resting behaviours be used as indicators of welfare in shelter dogs (Canis lupus familiaris)?. PLoS ONE 11, e0163620 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Langford, F. M. & Cockram, M. S. Is sleep in animals affected by prior waking experiences?. Anim. Welf. 19, 215–222 (2010).

    CAS 

    Google Scholar 

  • 28.

    Toth, L. A. & Bhargava, P. Animal models of sleep disorders. Comp. Med. 63, 91–104 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Zanghi, B. M., Kerr, W., DeRivera, C., Araujo, J. & Milgram, B. Sleep and biorhythms as a function of age in the dog. J. Vet. Behav. 5, 159 (2010).

    Google Scholar 

  • 30.

    Zanghi, B. M. Circadian Biorhythms of Sleep/Wake Dogs, Activity/Rest Cycles In Adult and Aged dogs. in Nestle Purina Companion Aninmal Nutrition Summit vol. 31 114–117 (Purina Institute, 2010).

  • 31.

    Zanghi, B. M. et al. Characterizing behavioral sleep using actigraphy in adult dogs of various ages fed once or twice daily. J. Vet. Behav. 8, 195–203 (2013).

    Google Scholar 

  • 32.

    Bódizs, R., Kis, A., Gácsi, M. & Topál, J. Sleep in the dog: Comparative, behavioral and translational relevance. Curr. Opin. Behav. Sci. 33, 25–33 (2020).

    Google Scholar 

  • 33.

    Kis, A. et al. Development of a non-invasive polysomnography technique for dogs (Canis familiaris). Physiol. Behav. 130, 149–156 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Takeuchi, T. & Harada, E. Age-related changes in sleep-wake rhythm in dog. Behav. Brain Res. 136, 193–199 (2002).

    PubMed 

    Google Scholar 

  • 35.

    Adams, G. J. & Johnson, K. G. Sleep-wake cycles and other night-time behaviours of the domestic dog Canis familiaris. Appl. Anim. Behav. Sci. 36, 233–248 (1993).

    Google Scholar 

  • 36.

    Adams, G. J. & Johnson, K. G. Behavioural responses to barking and other auditory stimuli during night-time sleeping and waking in the domestic dog (Canis familiaris). Appl. Anim. Behav. Sci. 39, 151–162 (1994).

    Google Scholar 

  • 37.

    Bunford, N. et al. Differences in pre-sleep activity and sleep location are associated with variability in daytime/nighttime sleep electrophysiology in the domestic dog. Sci. Rep. 8, 7109 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 38.

    Iotchev, I. B. et al. Age-related differences and sexual dimorphism in canine sleep spindles. Sci. Rep. 9, 10092 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 39.

    Kis, A. et al. Sleep macrostructure is modulated by positive and negative social experience in adult pet dogs. Proc. R. Soc. B Biol. Sci. 284, 20171883 (2017).

    Google Scholar 

  • 40.

    Mong, J. A. & Cusmano, D. M. Sex differences in sleep: Impact of biological sex and sex steroids. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150110 (2016).

    Google Scholar 

  • 41.

    Andersen, M. L. et al. Effects of sleep loss on sleep architecture in Wistar rats: Gender-specific rebound sleep. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 32, 975–983 (2008).

    CAS 

    Google Scholar 

  • 42.

    McKillop, L. E. et al. Effects of aging on cortical neural dynamics and local sleep homeostasis in mice. J. Neurosci. 38, 3911–3928 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Nakamura, T. J., Takasu, N. N. & Nakamura, W. The suprachiasmatic nucleus: Age-related decline in biological rhythms. J. Physiol. Sci. 66, 367–374 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Abou-Ismail, U. A., Burman, O. H. P., Nicol, C. J. & Mendl, M. Can sleep behaviour be used as an indicator of stress in group-housed rats (Rattus norvegicus)?. Anim. Welf. 16, 185–188 (2007).

    CAS 

    Google Scholar 

  • 45.

    Sadeh, A., Keinan, G. & Daon, K. Effects of stress on sleep: The moderating role of coping style. Heal. Psychol. 23, 542–545 (2004).

    Google Scholar 

  • 46.

    Okun, M. L. Biological consequences of disturbed sleep: Important mediators of health?. Jpn. Psychol. Res. 53, 163–176 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Van Reeth, O. et al. Interactions between stress and sleep: From basic research to clinical situations. Sleep Med. Rev. 4, 201–219 (2000).

    Google Scholar 

  • 48.

    Novati, A. et al. Chronically restricted sleep leads to depression-like changes in neurotransmitter receptor sensitivity and neuroendocrine stress reactivity in rats. Sleep 31, 1579–1585 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Taylor, K. D. & Mills, D. S. The effect of the kennel environment on canine welfare: A critical review of experimental studies. Anim. Welf. 16, 435–447 (2007).

    CAS 

    Google Scholar 

  • 50.

    Sales, G., Hubrecht, R., Peyvandi, A., Milligan, S. & Shield, B. Noise in dog kennelling: Is barking a welfare problem for dogs?. Appl. Anim. Behav. Sci. 52, 321–329 (1997).

    Google Scholar 

  • 51.

    Hewison, L. F., Wright, H. F., Zulch, H. E. & Ellis, S. L. H. Short term consequences of preventing visitor access to kennels on noise and the behaviour and physiology of dogs housed in a rescue shelter. Physiol. Behav. 133, 1–7 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Schwartz, J. R. L. & Roth, T. Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Curr. Neuropharmacol. 6, 367–378 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Reicher, V. et al. Repeated afternoon sleep recordings indicate first-night-effect-like adaptation process in family dogs. J. Sleep Res. 29, 1–10 (2020).

    Google Scholar 

  • 54.

    Piccione, G. et al. Comparison of daily distribution of rest/activity in companion cats and dogs. Biol. Rhythm Res. 45, 615–623 (2014).

    Google Scholar 

  • 55.

    Kredlow, M. A., Capozzoli, M. C., Hearon, B. A., Calkins, A. W. & Otto, M. W. The effects of physical activity on sleep: A meta-analytic review. J. Behav. Med. 38, 427–449 (2015).

    PubMed 

    Google Scholar 

  • 56.

    Barber, N. Play and energy regulation in mammals. Q. Rev. Biol. 66, 129–147 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Ahloy-Dallaire, J., Espinosa, J. & Mason, G. Play and optimal welfare: Does play indicate the presence of positive affective states?. Behav. Processes 156, 3–15 (2018).

    PubMed 

    Google Scholar 

  • 58.

    Penev, P. D. Sleep deprivation and energy metabolism: To sleep, perchance to eat?. Curr. Opin. Endocrinol. Diabetes. Obes. 14, 374–381 (2007).

    PubMed 

    Google Scholar 

  • 59.

    Mavanji, V., Billington, C. J., Kotz, C. & Teske, J. A. Sleep and obesity: A focus on animal models. Neurosci. Biobehav. Rev. 36, 1015–1029 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Zanghi, B. M., Kerr, W., de Rivera, C., Araujo, J. A. & Milgram, N. W. Effect of age and feeding schedule on diurnal rest/activity rhythms in dogs. J. Vet. Behav. 7, 339–347 (2012).

    Google Scholar 

  • 61.

    Knutson, K. L., Spiegel, K., Penev, P. & Van Cauter, E. The metabolic consequences of sleep deprivation. Sleep Med. Rev. 11, 163–178 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Kiddie, J. & Collins, L. Identifying environmental and management factors that may be associated with the quality of life of kennelled dogs (Canis familiaris). Appl. Anim. Behav. Sci. 167, 43–55 (2015).

    Google Scholar 

  • 63.

    Taylor, K. D. & Mills, D. S. The effect of the kennel environment on canine welfare: A critical review of experimental studies (2007).

  • 64.

    CONCEA. Resolução normativa no 12. Diretriz brasileira para o cuidado e a utilização de animais para fins científicos e didáticos. Diário Oficial da União No 186 (2013).

  • 65.

    Bateson, M. & Martin, P. Measuring Behaviour (Cambridge University Press, 2021) https://doi.org/10.1017/CBO9780511810893.

    Book 

    Google Scholar 

  • 66.

    Broom, D. M. & Fraser, A. F. Domestic Animal Behaviour and Welfare (CABI, 2015).

    Google Scholar 

  • 67.

    Luescher, U. A., McKeown, D. B. & Halip, J. Stereotypic or obsessive-compulsive disorders in dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 21, 401–413 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Google Scholar 

  • 69.

    Crawley, M. J. The R Book (Wiley, 2007). https://doi.org/10.1002/9780470515075.

    Book 
    MATH 

    Google Scholar 

  • 70.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 71.

    Becker, R. A., Chambers, J. M. & Wilks, A. R. The New S Language (Chapman and Hall/CRC, 1988).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions