in

The deglacial forest conundrum

  • Birks, H. J. B. Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies. Open Ecol. J. 3, 68–110 (2011).

    Article 

    Google Scholar 

  • Chevalier, M. et al. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Sci. Rev. 210, 103384 (2020).

    Article 

    Google Scholar 

  • Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dyn. 37, 775–802 (2011).

    Article 

    Google Scholar 

  • Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).

  • Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).

    Article 

    Google Scholar 

  • Harrison, S. BIOME 6000 DB classified plotfile version 1. https://doi.org/10.17864/1947.99. (2017).

  • Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Neilson, R. P. et al. Forecasting regional to global plant migration in response to climate change. BioScience 55 https://academic.oup.com/bioscience/article/55/9/749/285963 (2005).

  • Normand, S. et al. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B: Biol. Sci. 278, 3644–3653 (2011).

    Article 

    Google Scholar 

  • Seltzer, A. M. et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 593, 228–232 (2021).

  • Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ray, N. & Adams, J. M. A GIS-based Vegetation Map of the World at the Last Glacial Maximum (25,000-15,000 BP). Internet Archaeol. 11, https://doi.org/10.11141/ia.11.2 (2001).

  • Birks, H. J. B. & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).

    Article 

    Google Scholar 

  • Roberts, D. R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B: Biol. Sci. 282, 20142903 (2015).

  • Clark, J. S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204–224 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jackson, S. & Overpeck, J. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).

    Article 

    Google Scholar 

  • Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

  • Harrison, S. P. & Goñi, M. F. S. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quat. Sci. Rev. 29, 2957–2980 (2010).

    ADS 
    Article 

    Google Scholar 

  • Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).

    ADS 
    CAS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1130/0091-7613(2002)0302.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%282002%29030%3C0971%3ARAWVRT%3E2.0.CO%3B2″ aria-label=”Article reference 20″>Article 

    Google Scholar 

  • Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).

    Article 

    Google Scholar 

  • Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Article 

    Google Scholar 

  • Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).

    Article 

    Google Scholar 

  • Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article 

    Google Scholar 

  • Webb, T. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).

    Article 

    Google Scholar 

  • Jackson, S. T. & Williams, J. W. Modern analogs in quaternary paleoecology: Here today, gone yesterday, gone tomorrow? Annu. Rev. Earth Planet. Sci. 32, 495–537 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes (>30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).

    ADS 
    Article 

    Google Scholar 

  • He, F. Simulating transient climate evolution of the last deglaciation with CCSM3 Dissertation at the University of Wisconsin – Madison (2011).

  • Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. in Quaternary Science Reviews vol. 19 213–226 (Pergamon, 2000).

  • He, C. et al. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Sci. Adv. 7, eabe2611 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Modeling Earth Syst. 5, 459–482 (2013).

  • Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).

    Article 

    Google Scholar 

  • Dallmeyer, A., Claussen, M. & Brovkin, V. Harmonising plant functional type distributions for evaluating Earth system models. Clim 15, 335–366 (2019).

    Google Scholar 

  • Ni, J., Cao, X., Jeltsch, F. & Herzschuh, U. Biome distribution over the last 22,000 yr in China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 33–47 (2014).

    Article 

    Google Scholar 

  • Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article 

    Google Scholar 

  • Sobol, M. K., Scott, L. & Finkelstein, S. A. Reconstructing past biomes states using machine learning and modern pollen assemblages: a case study from Southern Africa. Quat. Sci. Rev. 212, 1–17 (2019).

    ADS 
    Article 

    Google Scholar 

  • Marinova, E. et al. Pollen‐derived biomes in the Eastern Mediterranean–Black Sea–Caspian‐Corridor. J. Biogeogr. 45, 484–499 (2018).

    Article 

    Google Scholar 

  • Cao, X. et al. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP. Clim. Past 15, 1503–1536 (2019).

    Article 

    Google Scholar 

  • Geng, R. et al. Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for major taxa. Front. Ecol. Evol. 10, 508 (2022).

    Article 

    Google Scholar 

  • Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).

    ADS 
    Article 

    Google Scholar 

  • Sugita, S. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17, 229–241 (2007).

    ADS 
    Article 

    Google Scholar 

  • Githumbi, E. et al. European pollen-based REVEALS land-cover reconstructions for the Holocene: Methodology, mapping and potentials. Earth Syst. Sci. Data 14, 1581–1619 (2022).

    ADS 
    Article 

    Google Scholar 

  • Snell, R. S. et al. Using dynamic vegetation models to simulate plant range shifts. Ecography 37, 1184–1197 (2014).

    Article 

    Google Scholar 

  • Bullock, J. M. et al. Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).

    Article 

    Google Scholar 

  • Svenning, J. C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).

    Article 

    Google Scholar 

  • Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nat. Commun. 7, 1–11 (2016).

    Article 

    Google Scholar 

  • Herzschuh, U. Legacy of the Last Glacial on the present‐day distribution of deciduous versus evergreen boreal forests. Glob. Ecol. Biogeogr. 29, 198–206 (2020).

    Article 

    Google Scholar 

  • Väliranta, M. et al. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat. Commun. 6, 1–8 (2015).

    Article 

    Google Scholar 

  • Schulte, L., Li, C., Livsovski, S. & Herzschuh, U. Forest-permafrost feedbacks and glacial refugia help explain the unequal distribution of larch across continents. J. Biogeogr. 9, 0305–0270 (2022).

    Google Scholar 

  • Davis, M. B., Shaw, R. G. & Etterson, J. R. Evolutionary responses to changing climate. Ecology 86, 1704–1714 (2005).

    Article 

    Google Scholar 

  • Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).

    Article 

    Google Scholar 

  • Pennington, W. Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain. Vegetatio 67, 105–118 (1986).

    Article 

    Google Scholar 

  • MacDonald, G. M., Kremenetski, K. V. & Beilman, D. W. Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. B: Biol. Sci. 363, 2285–2299 (2008).

    CAS 
    Article 

    Google Scholar 

  • Prentice, I. C., Bartlein, P. J. & Webb, T. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).

    Article 

    Google Scholar 

  • Cao, X. Y., Herzschuh, U., Telford, R. J. & Ni, J. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction. Rev. Palaeobot. Palynol. 211, 87–96 (2014).

    Article 

    Google Scholar 

  • Leroy, S. A. G., Arpe, K., Mikolajewicz, U. & Wu, J. Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum. Clim 16, 2039–2054 (2020).

    Google Scholar 

  • Kaufman, D. et al. A global database of Holocene paleotemperature records. Sci. Data 7, 115 (2020).

  • Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reick, C. et al. JSBACH 3—The land component of the MPI Earth System Model: documentation of version 3.2. Hamburg: MPI für Meteorologie. Berichte zur Erdsystemforsch. (2021).

  • Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, L07405 (2009).

    ADS 
    Article 

    Google Scholar 

  • Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).

    ADS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0469(1978)0352.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0469%281978%29035%3C2362%3ALTVODI%3E2.0.CO%3B2″ aria-label=”Article reference 66″>Article 

    Google Scholar 

  • Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).

    ADS 
    Article 

    Google Scholar 

  • Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).

    ADS 
    Article 

    Google Scholar 

  • Loana Meccia, V. & Mikolajewicz, U. Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM-v1.2). Geosci. Model Dev. 11, 4677–4692 (2018).

    ADS 
    Article 

    Google Scholar 

  • Riddick, T., Brovkin, V., Hagemann, S. & Mikolajewicz, U. Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0. Geosci. Model Dev. 11, 4291–4316 (2018).

    ADS 
    Article 

    Google Scholar 

  • Kapsch, M., Mikolajewicz, U., Ziemen, F. & Schannwell, C. Ocean response in transient simulations of the last deglaciation dominated by underlying ice‐sheet reconstruction and method of meltwater distribution. Geophys. Res. Lett. 49, e2021GL096767 (2022).

    ADS 
    Article 

    Google Scholar 

  • Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rehfeld, K., Marwan, N., Heitzig, J. & Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process. Geophys. 18, 389–404 (2011).

    ADS 
    Article 

    Google Scholar 

  • Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    ADS 
    Article 

    Google Scholar 

  • Cao, X. Y., Ni, J., Herzschuh, U., Wang, Y. B. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).

    Article 

    Google Scholar 

  • Bigelow, N. H. et al. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. Atmos. 108, 8170 (2003).

  • Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    ADS 
    Article 

    Google Scholar 

  • Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wessel, P. et al. Generic mapping tools: improved version released. EOS Trans. AGU 94, 409–410 (2013).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Early-season plant-to-plant spatial uniformity can affect soybean yields

    MADMEC winner identifies sustainable greenhouse-cooling materials