in

The effects of aqueous extract from watermelon (Citrullus lanatus) peel on the growth and physiological characteristics of Dolichospermum flos-aquae

  • Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ. Sci. Technol. 42, 8916–8921. https://doi.org/10.1021/es801717y (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Vikrant, K. et al. Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci. Total Environ. 616–617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Merel, S. et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59, 303–327. https://doi.org/10.1016/j.envint.2013.06.013 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65, 995–1010. https://doi.org/10.1007/s00248-012-0159-y (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324. https://doi.org/10.1038/s41559-017-0407-0 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Paerl, H. W. & Fulton, R. S. Ecology of harmful cyanobacteria. In Ecology of Harmful Algae (eds Granéli, E. & Turner, J. T.) 95–109 (Springer, 2006).

    Chapter 

    Google Scholar 

  • Guan, Y., Zhang, M., Yang, Z., Shi, X. & Zhao, X. Intra-annual variation and correlations of functional traits in Microcystis and Dolichospermum in Lake Chaohu. Ecol. Indic. 111, 106052. https://doi.org/10.1016/j.ecolind.2019.106052 (2020).

    Article 

    Google Scholar 

  • Zhang, M. et al. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving factors. Phycol. Res. 64, 44–55. https://doi.org/10.1111/pre.12112 (2016).

    Article 

    Google Scholar 

  • Krishnamurthy, T., Carmichael, W. W. & Sarver, E. W. Toxic peptides from freshwater cyanobacteria (blue-green algae) I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon 24, 865–873. https://doi.org/10.1016/0041-0101(86)90087-5 (1986).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mahmood, N. A. & Carmichael, W. W. Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC 525–17. Toxicon 25, 1221–1227. https://doi.org/10.1016/0041-0101(87)90140-1 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, X., Dreher, T. W. & Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68. https://doi.org/10.1016/j.hal.2015.10.015 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Buratti, F. M. et al. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 91, 1049–1130. https://doi.org/10.1007/s00204-016-1913-6 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Iredale, R. S., McDonald, A. T. & Adams, D. G. A series of experiments aimed at clarifying the mode of action of barley straw in cyanobacterial growth control. Water Res. 46, 6095–6103. https://doi.org/10.1016/j.watres.2012.08.040 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang, S. H., Zhang, S. Y. & Li, G. Acorus calamus root extracts to control harmful cyanobacteria blooms. Ecol. Eng. 94, 95–101. https://doi.org/10.1016/j.ecoleng.2016.05.053 (2016).

    Article 

    Google Scholar 

  • Mecina, G. F. et al. Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginosa. Aquat. Toxicol. 211, 81–91. https://doi.org/10.1016/j.aquatox.2019.03.011 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yuan, R. et al. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci. Total Environ. 712, 13622. https://doi.org/10.1016/j.scitotenv.2019.136332 (2020).

    CAS 
    Article 

    Google Scholar 

  • Tan, K. et al. A review of allelopathy on microalgae. Microbiology 165, 587–592. https://doi.org/10.1099/mic.0.000776 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mecina, G. F. et al. Response of Microcystis aeruginosa BCCUSP 232 to barley (Hordeum vulgare L.) straw degradation extract and fractions. Sci. Total. Environ. 599–600, 1837–1847. https://doi.org/10.1016/j.scitotenv.2017.05.156 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhao, W., Zheng, Z., Zhang, J., Roger, S. F. & Luo, X. Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225, 424–433. https://doi.org/10.1016/j.chemosphere.2019.03.070 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bottino, F. et al. Effects of macrophyte leachate on Anabaena sp. and Chlamydomonas moewusii growth in freshwater tropical ecosystems. Limnology 19, 171–176. https://doi.org/10.1007/s10201-017-0532-0 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zhang, K., Yu, M., Xu, P., Zhang, S. & Benoit, G. Physiological and morphological response of Aphanizomenon flos-aquae to watermelon (Citrullus lanatus) peel aqueous extract. Aquat. Toxicol. 225, 105548. https://doi.org/10.1016/j.aquatox.2020.105548 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 1, F4.3.1-F4.38 (2001).

    Article 

    Google Scholar 

  • Ozaki, K. et al. Electron microscopic study on lysis of a cyanobacterium Microcystis. J. Health Sci. 55, 578–585. https://doi.org/10.1248/jhs.55.578 (2009).

    CAS 
    Article 

    Google Scholar 

  • Staats, N., De Winder, B., Stal, L. J. & Mur, L. R. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol. 34, 161–169. https://doi.org/10.1080/09670269910001736212 (1999).

    Article 

    Google Scholar 

  • Hellebust, J. & Craigie, J. (eds) Handbook of Phycological Methods. Physiological and Biochemical Methods (Cambridge University, 1978).

    Google Scholar 

  • Roháček, K. & Barták, M. Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. Photosynthetica 37, 339–363. https://doi.org/10.1023/A:1007172424619 (1999).

    Article 

    Google Scholar 

  • Zhang, T. T., He, M., Wu, A. P. & Nie, L. W. Inhibitory effects and mechanisms of Hydrilla verticillata (Linn.f.) royle extracts on freshwater algae. Bull. Environ. Contam. Toxicol. 88, 477–481. https://doi.org/10.1007/s00128-011-0500-z (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhao, S., Pan, W. & Ma, C. Stimulation and inhibition effects of algae-lytic products from Bacillus cereus strain L7 on Anabaena flos-aquae. J. Appl. Phycol. 24, 1015–1021. https://doi.org/10.1007/s10811-011-9725-9 (2012).

    CAS 
    Article 

    Google Scholar 

  • Kaminski, A. et al. Aquatic macrophyte Lemna trisulca (L.) as a natural factor for reducing anatoxin-a concentration in the aquatic environment and biomass of cyanobacterium Anabaena flos-aquae (Lyngb.) de Bréb. Algal Res. 9, 212–217. https://doi.org/10.1016/j.algal.2015.03.014 (2015).

    Article 

    Google Scholar 

  • Gumbo, J. R., Cloete, T. E., van Zyl, G. J. J. & Sommerville, J. E. M. The viability assessment of Microcystis aeruginosa cells after co-culturing with Bacillus mycoides B16 using flow cytometry. Phys. Chem. Earth. 72–75, 24–33. https://doi.org/10.1016/j.pce.2014.09.004 (2014).

    Article 

    Google Scholar 

  • Fan, J., Ho, L., Hobson, P. & Brookes, J. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Res. 47, 5153–5164. https://doi.org/10.1016/j.watres.2013.05.057 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lu, Z. Studies on oxidative stress and programmed cell death of Microcystis aeruginosa induced by polyphenolic allelochemicals (D). Institute of Hydrobiology, Chinese Academy of Sciences (2014).

  • Lu, Z. et al. Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. Algal Res. 21, 148–155. https://doi.org/10.1016/j.algal.2016.11.007 (2017).

    Article 

    Google Scholar 

  • Chen, Y. et al. Vitamin C modulates Microcystis aeruginosa death and toxin release by induced Fenton reaction. J. Hazard. Mater. 321, 888–895. https://doi.org/10.1016/j.jhazmat.2016.10.010 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33, 258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shao, J. H., Wu, X. Q. & Li, R. H. Physiological responses of Microcystis aeruginosa PCC7806 to nonanoic acid stress. Environ. Toxicol. 24, 610–617. https://doi.org/10.1002/tox.20462 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hua, Q. et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotox. Environ. Safe. 148, 953–959. https://doi.org/10.1016/j.ecoenv.2017.11.049 (2018).

    CAS 
    Article 

    Google Scholar 

  • Chen, L., Wang, Y., Shi, L., Zhao, J. & Wang, W. Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth. Environ. Sci. Pollut. Res. 26, 22389–22399. https://doi.org/10.1007/s11356-019-05507-1 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zhang, S. H., Xu, P. Y. & Chang, J. J. Physiological responses of Aphanizomenon flos-aquae under the stress of Sagittaria sagittifolia extract. Bull. Environ. Contam. Toxicol. 97, 870–875. https://doi.org/10.1007/s00128-016-1948-7 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, J. et al. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J. Environ. Sci. 43, 40–47. https://doi.org/10.1016/j.jes.2015.08.020 (2016).

    CAS 
    Article 

    Google Scholar 

  • Shao, J. et al. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action. Aquat. Toxicol. 142–143, 257–263. https://doi.org/10.1016/j.aquatox.2013.08.019 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang, S. & Benoit, G. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome. Aquat. Toxicol. 215, 105271. https://doi.org/10.1016/j.aquatox.2019.105271 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Derks, A., Schaven, K. & Bruce, D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BBA-Bioenergetics 1847, 468–485. https://doi.org/10.1016/j.bbabio.2015.02.008 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jiang, H. & Qiu, B. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae) to prolonged uv-b exposure. J. Phycol. 41, 983–992. https://doi.org/10.1111/j.1529-8817.2005.00126.x (2005).

    Article 

    Google Scholar 

  • Azizullah, A., Richter, P. & Häder, D. P. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis: As sensitive endpoints for toxicity evaluation of liquid detergents. J. Photochem. Photobiol. B Biol. 133, 18–26. https://doi.org/10.1016/j.jphotobiol.2014.02.011 (2014).

    CAS 
    Article 

    Google Scholar 

  • Singh, D. P., Khattar, J. I. S., Gupta, M. & Kaur, G. Evaluation of toxicological impact of cartap hydrochloride on some physiological activities of a non-heterocystous cyanobacterium Leptolyngbya foveolarum. Pestic. Biochem. Phys. 110, 63–70. https://doi.org/10.1016/j.pestbp.2014.03.002 (2014).

    CAS 
    Article 

    Google Scholar 

  • Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541. https://doi.org/10.1080/05704920701551530 (2007).

    CAS 
    Article 

    Google Scholar 

  • Li, K. et al. In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy. Bioresource Technol. 244, 1439–1444. https://doi.org/10.1016/j.biortech.2017.04.116 (2017).

    CAS 
    Article 

    Google Scholar 

  • Beutner, S. et al. Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: Carotenoids, flavonoids, phenols and indigoids. The role of beta-carotene in antioxidant functions. J. Sci. Food. Agric. 81, 559–568. https://doi.org/10.1002/jsfa.849 (2001).

    CAS 
    Article 

    Google Scholar 

  • Kelman, D., Ben-Amotz, A. & Berman-Frank, I. Carotenoids provide the major antioxidant defence in the globally significant N2-fixing marine cyanobacterium Trichodesmiumem. Environ. Microbiol. 11, 1897–1908. https://doi.org/10.1111/j.1462-2920.2009.01913.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhou, T. et al. Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H2O2: A new insight into extracellular and intracellular damage pathways. Chemosphere 211, 1098–1108. https://doi.org/10.1016/j.chemosphere.2018.08.042 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schreiber, U., Quayle, P., Schmidt, S., Escher, B. I. & Mueller, J. F. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22, 2554–2563. https://doi.org/10.1016/j.bios.2006.10.018 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kumar, K. S. et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotox. Environ. Safe. 104, 51–71. https://doi.org/10.1016/j.ecoenv.2014.01.042 (2014).

    CAS 
    Article 

    Google Scholar 

  • Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence: A practical guide. J Exp Bot 51, 659–668. https://doi.org/10.1093/jxb/51.345.659 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lürling, M. & Roessink, I. On the way to cyanobacterial blooms: Impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65, 618–626. https://doi.org/10.1016/j.chemosphere.2006.01.073 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhu, J. Y., Liu, B. Y., Wang, J., Gao, Y. N. & Wu, Z. B. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat. Toxicol. 98, 196–203. https://doi.org/10.1016/j.aquatox.2010.02.011 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wan, J., Guo, P., Peng, X. & Wen, K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J. Hazard. Mater. 283, 778–786. https://doi.org/10.1016/j.jhazmat.2014.10.026 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wang, R. et al. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 147, 264–271. https://doi.org/10.1016/j.chemosphere.2015.12.109 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Long, M. et al. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Res. 35, 508–518. https://doi.org/10.1016/j.algal.2018.09.023 (2018).

    Article 

    Google Scholar 

  • Cosgrove, J. & Borowitzka, M. A. Chloreophyll fluorescence terminology: An introduction. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, Developments in Applied Phycology Vol. 4 (eds Sugget, D. J. et al.) 1–18 (Springer, 2010).

    Google Scholar 

  • Kumar, K. S. & Han, T. Physiological response of Lemna species toherbicides and its probable use in toxicity testing. Toxicol. Environ. Health Sci. 2, 39–49. https://doi.org/10.1007/BF03216512 (2010).

    Article 

    Google Scholar 

  • Ricart, M. et al. Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. J. Hydrol. 383, 52–61. https://doi.org/10.1016/j.jhydrol.2009.08.014 (2010).

    CAS 
    Article 

    Google Scholar 

  • Deng, C., Pan, X. & Zhang, D. Influence of of loxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. J. Biosci. Bioeng. 119, 159–164. https://doi.org/10.1016/j.jbiosc.2014.07.014 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 33, 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gao, L. et al. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa. Water Res. 69, 51–58. https://doi.org/10.1016/j.watres.2014.10.060 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. Aquat. Toxicol. 126, 214–223. https://doi.org/10.1016/j.aquatox.2012.11.012 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Henriques, I. D. S. & Love, N. G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res. 41, 4177–4185. https://doi.org/10.1016/j.watres.2007.05.001 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zheng, S. M. et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci. Total Environ. 660, 1182–1190. https://doi.org/10.1016/j.scitotenv.2019.01.067 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Solar-powered desalination device wins MIT $100K competition