in

The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis)

  • Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).

    Google Scholar 

  • Le Couteur, D. G. et al. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237–1252 (2016).

    PubMed 

    Google Scholar 

  • Levin, E., Mitra, C. & Davidowitz, G. Fed males increase oviposition in female hawkmoths via non-nutritive direct benefits. Anim. Behav. 112, 111–118 (2016).

    Google Scholar 

  • Baker, H. G. & Baker, I. Amino-acids in nectar and their evolutionary significance. Nature 241, 543–545 (1973).

    CAS 

    Google Scholar 

  • Nepi, M. et al. Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 475–481 (2012).

    Google Scholar 

  • Nepi, M. Beyond nectar sweetness: The hidden ecological role of non-protein amino acids in nectar. J. Ecol. 102, 108–115 (2014).

    CAS 

    Google Scholar 

  • Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27, 2545–2558 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8, 349–356 (1977).

    Google Scholar 

  • Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31, 65–75 (2017).

    Google Scholar 

  • Alm, J., Ohnmeiss, T. E., Lanza, J. & Vriesenga, L. Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84, 53–57 (1990).

    PubMed 

    Google Scholar 

  • Petanidou, T., Laere, A. V., Ellis, W. N. & Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars?. Oikos 115, 155–169 (2006).

    CAS 

    Google Scholar 

  • Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vrzal, E. M., Allan, S. A. & Hahn, D. A. Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. J. Insect Physiol. 56, 1659–1664 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Mustard, J. A. Neuroactive nectar: Compounds in nectar that interact with neurons. Arthropod-Plant Interact. 14, 151–159 (2020).

    Google Scholar 

  • Smith-Pardo, A. H., Carpenter, J. M. & Kimsey, L. The diversity of hornets in the genus Vespa (Hymenoptera: Vespidae; Vespinae), their importance and interceptions in the United States. Insect Syst. Divers. 4, 2 (2020).

    Google Scholar 

  • Cott, H. B. The edibility of birds. Nature 156, 736–737 (1945).

    CAS 
    PubMed 

    Google Scholar 

  • Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).

    CAS 
    PubMed 

    Google Scholar 

  • Takashi, A., Yoshiya, T., Hiromitsu, M. & Yasuko, Y. K. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 99, 79–84 (1991).

    Google Scholar 

  • Hunt, J. H. Nourishment and the evolution of the social Vespidae. Soc. Biol. Wasps 426, 450 (1991).

    Google Scholar 

  • Ishay, J. Comb bulding by the oriental hornet (Vespa orientalis). Anim. Behav. 24, 72–83 (1976).

    Google Scholar 

  • Ganor, E. & Ishay, J. The cement in hornet combs. J. Ethol. 10, 31–39 (1992).

    Google Scholar 

  • Brull, L. Project ISIAH—Experiment on the effects of micro-gravity on hornets’ nest building and activity. Isr. Space Res. Technol. Inf. Bull. 9, 2–21 (1992).

    Google Scholar 

  • Ishay, J. et al. Exposure to an additional alternating magnetic field affects comb building by worker hornets. Physiol. Chem. Phys. Med. NMR 39, 83–88 (2007).

    PubMed 

    Google Scholar 

  • Kisliuk, M. & Ishay, J. Influence of the earth’s magnetic field on the comb building orientation of hornets. Experientia 35, 1041–1042 (1979).

    Google Scholar 

  • Nepi, M. et al. Nectar and pollination drops: How different are they?. Ann. Bot. 104, 205–219 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wyatt, G. R. The biochemistry of insect hemolymph. Annu. Rev. Entomol. 6, 75–102 (1961).

    CAS 

    Google Scholar 

  • Jeong, H. et al. Nutritional value of the larvae of the alien invasive wasp Vespa velutina nigrithorax and amino acid composition of the larval saliva. Foods 9, 885 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Hermosín, I., Chicón, R. M. & DoloresCabezudo, M. Free amino acid composition and botanical origin of honey. Food Chem. 83, 263–268 (2003).

    Google Scholar 

  • Baquet, A., Lavoinne, A. & Hue, L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. J. 273, 57–62 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teulier, L., Weber, J.-M., Crevier, J. & Darveau, C.-A. Proline as a fuel for insect flight: Enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B Biol. Sci. 283, 20160333 (2016).

    Google Scholar 

  • Li, Y. et al. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 63, 34–46 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Koštál, V., Korbelová, J., Poupardin, R., Moos, M. & Šimek, P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 219, 2358–2367 (2016).

    PubMed 

    Google Scholar 

  • Hrassnigg, N., Leonhard, B. & Crailsheim, K. Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids 24, 205–212 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Carter, C., Shafir, S., Yehonatan, L., Palmer, R. G. & Thornburg, R. A novel role for proline in plant floral nectars. Naturwissenschaften 93, 72–79 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Inouye, D. W. & Waller, G. D. Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65, 618–625 (1984).

    CAS 

    Google Scholar 

  • Bogo, G. et al. Effects of non-protein amino acids in nectar on bee survival and behavior. J. Chem. Ecol. 45, 278–285 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Felicioli, A. et al. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis. Insect Mol. Biol. 27, 556–563 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Mevi-Schütz, J. & Erhardt, A. Amino acids in nectar enhance butterfly fecundity: A long-awaited link. Am. Nat. 165, 411–419 (2005).

    PubMed 

    Google Scholar 

  • Ramputh, A. I. & Bown, A. W. Rapid [gamma]-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111, 1349–1352 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scholz, S. S., Reichelt, M., Mekonnen, D. W., Ludewig, F. & Mithöfer, A. Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Front. Plant Sci. 6, 1128 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).

    Google Scholar 

  • Altaye, S. Z., Pirk, C. W. W., Crewe, R. M. & Nicolson, S. W. Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J. Exp. Biol. 213, 3311–3318 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Pirk, C. W. W., Boodhoo, C., Human, H. & Nicolson, S. W. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41, 62–72 (2010).

    CAS 

    Google Scholar 

  • Archer, C. R., Pirk, C. W. W., Wright, G. A. & Nicolson, S. W. Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol. 28, 913–923 (2014).

    Google Scholar 

  • Mustard, J. A., Jones, L. & Wright, G. A. GABA signaling affects motor function in the honey bee. J. Insect Physiol. 120, 103989 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Gottesmann, C. GABA mechanisms and sleep. Neuroscience 111, 231–239 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Biswas, B. & Carlsson, A. Effect of intraperitoneally administered GABA on the locomotor activity of mice. Psychopharmacology 59, 91–94 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Śmiałowski, A., Śmiałowska, M., Reichenberg, K., Byrska, B. & Vetulani, J. Motor depression and head twitches induced by IP injection of GABA. Psychopharmacology 69, 295–298 (1980).

    PubMed 

    Google Scholar 

  • Tomonaga, S. et al. Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res. Bull. 63, 75–82 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Mena Gomez, M. A., Carlsson, A. & Garcia de Yebenes, J. The effect of β-alanine on motor behaviour, body temperature and cerebral monoamine metabolism in rat. J. Neural Transm. 43, 1–9 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Hamasu, K. et al. l-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids 37, 377–382 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Barton-Browne, L. B. Water regulation in insects. Annu. Rev. Entomol. 9, 63–82 (1964).

    Google Scholar 

  • Borycz, J., Borycz, J. A., Edwards, T. N., Boulianne, G. L. & Meinertzhagen, I. A. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. J. Exp. Biol. 215, 1399–1411 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Culbertson, J. Y., Kreider, R. B., Greenwood, M. & Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2, 75–98 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arrese, E. L. & Soulages, J. L. Insect Fat Body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–1061 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, G. et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 40, 1053–1063 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Boonstra, E. et al. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 6, 1520 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, R. C. et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30, 279–289 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Hoffman, J. R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 47, 627–636 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B Biol. Sci. 284, 20162126 (2017).

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017).


  • Source: Ecology - nature.com

    Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

    Individualism versus collective movement during travel