Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).
Le Couteur, D. G. et al. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237–1252 (2016).
Google Scholar
Levin, E., Mitra, C. & Davidowitz, G. Fed males increase oviposition in female hawkmoths via non-nutritive direct benefits. Anim. Behav. 112, 111–118 (2016).
Baker, H. G. & Baker, I. Amino-acids in nectar and their evolutionary significance. Nature 241, 543–545 (1973).
Google Scholar
Nepi, M. et al. Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 475–481 (2012).
Nepi, M. Beyond nectar sweetness: The hidden ecological role of non-protein amino acids in nectar. J. Ecol. 102, 108–115 (2014).
Google Scholar
Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27, 2545–2558 (2001).
Google Scholar
Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8, 349–356 (1977).
Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31, 65–75 (2017).
Alm, J., Ohnmeiss, T. E., Lanza, J. & Vriesenga, L. Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84, 53–57 (1990).
Google Scholar
Petanidou, T., Laere, A. V., Ellis, W. N. & Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars?. Oikos 115, 155–169 (2006).
Google Scholar
Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).
Google Scholar
Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).
Google Scholar
Vrzal, E. M., Allan, S. A. & Hahn, D. A. Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. J. Insect Physiol. 56, 1659–1664 (2010).
Google Scholar
Mustard, J. A. Neuroactive nectar: Compounds in nectar that interact with neurons. Arthropod-Plant Interact. 14, 151–159 (2020).
Smith-Pardo, A. H., Carpenter, J. M. & Kimsey, L. The diversity of hornets in the genus Vespa (Hymenoptera: Vespidae; Vespinae), their importance and interceptions in the United States. Insect Syst. Divers. 4, 2 (2020).
Cott, H. B. The edibility of birds. Nature 156, 736–737 (1945).
Google Scholar
Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).
Google Scholar
Takashi, A., Yoshiya, T., Hiromitsu, M. & Yasuko, Y. K. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 99, 79–84 (1991).
Hunt, J. H. Nourishment and the evolution of the social Vespidae. Soc. Biol. Wasps 426, 450 (1991).
Ishay, J. Comb bulding by the oriental hornet (Vespa orientalis). Anim. Behav. 24, 72–83 (1976).
Ganor, E. & Ishay, J. The cement in hornet combs. J. Ethol. 10, 31–39 (1992).
Brull, L. Project ISIAH—Experiment on the effects of micro-gravity on hornets’ nest building and activity. Isr. Space Res. Technol. Inf. Bull. 9, 2–21 (1992).
Ishay, J. et al. Exposure to an additional alternating magnetic field affects comb building by worker hornets. Physiol. Chem. Phys. Med. NMR 39, 83–88 (2007).
Google Scholar
Kisliuk, M. & Ishay, J. Influence of the earth’s magnetic field on the comb building orientation of hornets. Experientia 35, 1041–1042 (1979).
Nepi, M. et al. Nectar and pollination drops: How different are they?. Ann. Bot. 104, 205–219 (2009).
Google Scholar
Wyatt, G. R. The biochemistry of insect hemolymph. Annu. Rev. Entomol. 6, 75–102 (1961).
Google Scholar
Jeong, H. et al. Nutritional value of the larvae of the alien invasive wasp Vespa velutina nigrithorax and amino acid composition of the larval saliva. Foods 9, 885 (2020).
Google Scholar
Hermosín, I., Chicón, R. M. & DoloresCabezudo, M. Free amino acid composition and botanical origin of honey. Food Chem. 83, 263–268 (2003).
Baquet, A., Lavoinne, A. & Hue, L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. J. 273, 57–62 (1991).
Google Scholar
Teulier, L., Weber, J.-M., Crevier, J. & Darveau, C.-A. Proline as a fuel for insect flight: Enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B Biol. Sci. 283, 20160333 (2016).
Li, Y. et al. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 63, 34–46 (2015).
Google Scholar
Koštál, V., Korbelová, J., Poupardin, R., Moos, M. & Šimek, P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 219, 2358–2367 (2016).
Google Scholar
Hrassnigg, N., Leonhard, B. & Crailsheim, K. Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids 24, 205–212 (2003).
Google Scholar
Carter, C., Shafir, S., Yehonatan, L., Palmer, R. G. & Thornburg, R. A novel role for proline in plant floral nectars. Naturwissenschaften 93, 72–79 (2006).
Google Scholar
Inouye, D. W. & Waller, G. D. Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65, 618–625 (1984).
Google Scholar
Bogo, G. et al. Effects of non-protein amino acids in nectar on bee survival and behavior. J. Chem. Ecol. 45, 278–285 (2019).
Google Scholar
Felicioli, A. et al. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis. Insect Mol. Biol. 27, 556–563 (2018).
Google Scholar
Mevi-Schütz, J. & Erhardt, A. Amino acids in nectar enhance butterfly fecundity: A long-awaited link. Am. Nat. 165, 411–419 (2005).
Google Scholar
Ramputh, A. I. & Bown, A. W. Rapid [gamma]-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111, 1349–1352 (1996).
Google Scholar
ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016).
Google Scholar
Scholz, S. S., Reichelt, M., Mekonnen, D. W., Ludewig, F. & Mithöfer, A. Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Front. Plant Sci. 6, 1128 (2015).
Google Scholar
Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
Altaye, S. Z., Pirk, C. W. W., Crewe, R. M. & Nicolson, S. W. Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J. Exp. Biol. 213, 3311–3318 (2010).
Google Scholar
Pirk, C. W. W., Boodhoo, C., Human, H. & Nicolson, S. W. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41, 62–72 (2010).
Google Scholar
Archer, C. R., Pirk, C. W. W., Wright, G. A. & Nicolson, S. W. Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol. 28, 913–923 (2014).
Mustard, J. A., Jones, L. & Wright, G. A. GABA signaling affects motor function in the honey bee. J. Insect Physiol. 120, 103989 (2020).
Google Scholar
Gottesmann, C. GABA mechanisms and sleep. Neuroscience 111, 231–239 (2002).
Google Scholar
Biswas, B. & Carlsson, A. Effect of intraperitoneally administered GABA on the locomotor activity of mice. Psychopharmacology 59, 91–94 (1978).
Google Scholar
Śmiałowski, A., Śmiałowska, M., Reichenberg, K., Byrska, B. & Vetulani, J. Motor depression and head twitches induced by IP injection of GABA. Psychopharmacology 69, 295–298 (1980).
Google Scholar
Tomonaga, S. et al. Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res. Bull. 63, 75–82 (2004).
Google Scholar
Mena Gomez, M. A., Carlsson, A. & Garcia de Yebenes, J. The effect of β-alanine on motor behaviour, body temperature and cerebral monoamine metabolism in rat. J. Neural Transm. 43, 1–9 (1978).
Google Scholar
Hamasu, K. et al. l-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids 37, 377–382 (2009).
Google Scholar
Barton-Browne, L. B. Water regulation in insects. Annu. Rev. Entomol. 9, 63–82 (1964).
Borycz, J., Borycz, J. A., Edwards, T. N., Boulianne, G. L. & Meinertzhagen, I. A. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. J. Exp. Biol. 215, 1399–1411 (2012).
Google Scholar
Culbertson, J. Y., Kreider, R. B., Greenwood, M. & Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2, 75–98 (2010).
Google Scholar
Arrese, E. L. & Soulages, J. L. Insect Fat Body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).
Google Scholar
Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–1061 (1980).
Google Scholar
Wu, G. et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 40, 1053–1063 (2011).
Google Scholar
Boonstra, E. et al. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 6, 1520 (2015).
Google Scholar
Harris, R. C. et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30, 279–289 (2006).
Google Scholar
Hoffman, J. R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 47, 627–636 (2015).
Google Scholar
Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B Biol. Sci. 284, 20162126 (2017).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017).
Source: Ecology - nature.com