in

The environmental footprint of global food production

  • Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article 
    CAS 

    Google Scholar 

  • Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

    Article 

    Google Scholar 

  • Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article 
    CAS 

    Google Scholar 

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 

    Google Scholar 

  • Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ellis, E. C., Goldewikj, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

    Google Scholar 

  • Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rosegrant, M. W., Ringler, C. & Zhu, T. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).

    Article 

    Google Scholar 

  • Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).

    Article 

    Google Scholar 

  • Lee, R. Y., Seitzinger, S. & Mayorga, E. Land-based nutrient loading to LMEs: a global watershed perspective on magnitudes and sources. Environ. Dev. 17, 220–229 (2016).

    Article 

    Google Scholar 

  • Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    Article 
    CAS 

    Google Scholar 

  • McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    Article 
    CAS 

    Google Scholar 

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).

    Article 

    Google Scholar 

  • Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).

    Article 
    CAS 

    Google Scholar 

  • Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).

    Article 

    Google Scholar 

  • Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).

    Article 
    CAS 

    Google Scholar 

  • Halpern, B. S. et al. Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).

    Article 
    CAS 

    Google Scholar 

  • Béné, C. et al. Feeding 9 billion by 2050—putting fish back on the menu. Food Secur. 7, 261–274 (2015).

    Article 

    Google Scholar 

  • Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2013).

    Article 
    CAS 

    Google Scholar 

  • Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article 

    Google Scholar 

  • Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products (UNESCO-IHE, 2010).

  • Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).

    Article 
    CAS 

    Google Scholar 

  • Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kuempel, C. D. et al. Integrating life cycle and impact assessments to map food’s cumulative environmental footprint. One Earth 3, 65–78 (2020).

    Article 

    Google Scholar 

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    Article 
    CAS 

    Google Scholar 

  • Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    Article 

    Google Scholar 

  • Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).

    Article 

    Google Scholar 

  • Judd, A. D., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).

    Article 

    Google Scholar 

  • IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  • Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).

    Article 

    Google Scholar 

  • FAO The State of World Fisheries and Aquaculture 2020 (FAO, 2020).

  • Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    Article 
    CAS 

    Google Scholar 

  • FAOSTAT Database: New Food Balances (FAO, 2020); http://www.fao.org/faostat/en/#data/FBS

  • FAOSTAT Database: Production, Crops (FAO, 2020); http://www.fao.org/faostat/en/#data/QC

  • Dong, F. et al. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA–DEA approach. Renew. Agric. Food Syst. 31, 524–539 (2016).

    Article 

    Google Scholar 

  • Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).

    Article 

    Google Scholar 

  • Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).

    Article 

    Google Scholar 

  • Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).

    Article 

    Google Scholar 

  • Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).

    Article 

    Google Scholar 

  • Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 16, 29–35 (2018).

    Article 

    Google Scholar 

  • Williams, D. R., Phalan, B., Feniuk, C., Green, R. E. & Balmford, A. Carbon storage and land-use strategies in agricultural landscapes across three continents. Curr. Biol. 28, 2500–2505.e4 (2018).

    Article 
    CAS 

    Google Scholar 

  • Paul, B. G. & Vogl, C. R. Impacts of shrimp farming in Bangladesh: challenges and alternatives. Ocean Coastal Manage. 54, 201–211 (2011).

    Article 

    Google Scholar 

  • Ahmed, N., Cheung, W. W. L., Thompson, S. & Glaser, M. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy 82, 68–75 (2017).

    Article 

    Google Scholar 

  • FAOSTAT Database: Livestock Primary (FAO, 2020); http://www.fao.org/faostat/en/#data/QL

  • Ramankutty, N., Ricciardi, V., Mehrabi, Z. & Seufert, V. Trade-offs in the performance of alternative farming systems. Agric. Econ. 50, 97–105 (2019).

    Article 

    Google Scholar 

  • FAOSTAT Database: Detailed Trade Matrix (FAO, 2020); http://www.fao.org/faostat/en/#data/TM

  • Fisheries & Aquaculture—Fishery Statistical Collections—Fishery Commodities and Trade (FAO, 2019); http://www.fao.org/fishery/statistics/global-commodities-production/en

  • International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010, version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).

  • Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).

    Article 

    Google Scholar 

  • Petz, K. et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Change 29, 223–234 (2014).

    Article 

    Google Scholar 

  • Global Fishing Watch. Fishing effort. Fleet daily, v2 100th degree. (2021). https://globalfishingwatch.org/dataset-and-code-fishing-effort/

  • Verdegem, M. C. J., Bosma, R. H. & Verreth, J. A. J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22, 101–113 (2006).

    Article 

    Google Scholar 

  • Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23, GB0A04 (2009).

    Article 

    Google Scholar 

  • Bouwman, A. F., Van Drecht, G. & Van der Hoek, K. W. Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere 15, 137–155 (2005).

    Google Scholar 

  • Bouwman, A., Boumans, L. J. M. & Batjes, N. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 8-1–8-14 (2002).

    Article 

    Google Scholar 

  • FAOSTAT Database: Inputs, Fertilizers by Nutrient (FAO, 2020); http://www.fao.org/faostat/en/#data/RFN

  • Heffer, P., Gruere, A. & Roberts, T. Assessment of fertilizer use by crop at the global level 2014–2014/15, International Fertilizer Association (2017).

  • Fertilizer Use by Crop 5th edn (FAO, IFA & IFDC, 2002).

  • Islam, Md. S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48–61 (2005).

    Article 
    CAS 

    Google Scholar 

  • Wang, J., Beusen, A. H. W., Liu, X. & Bouwman, A. F. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ. Sci. Technol. 54, 1464–1474 (2020).

    Article 

    Google Scholar 

  • Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).

    Article 
    CAS 

    Google Scholar 

  • Gavrilova, O. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 10, Intergovernmental Panel on Climate Change (IPCC); Review Editors on Overview: Dario Gómez (Argentina) and William Irving (USA) (2019).

  • Seafood Carbon Emissions Tool, Lisa Max, Robert Parker, Peter Tyedmers, editors; (2020); http://seafoodco2.dal.ca/

  • Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).

    Article 
    CAS 

    Google Scholar 

  • IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  • Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).

    Article 
    CAS 

    Google Scholar 

  • Global Livestock Environmental Assessment Model, GLEAM, v.2.0.121 (FAO, 2018).

  • Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquacult. Rep. 15, 100216 (2019).

    Google Scholar 

  • Jackson, A. Fish in-fish out (FIFO) explained. Aquacult. Eur. 34, 5–10 (2009).

    Google Scholar 

  • Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    Article 
    CAS 

    Google Scholar 

  • Frazier, M. et al. Global food system pressure data. https://knb.ecoinformatics.org/view/doi:10.5063/F1V69H1B


  • Source: Ecology - nature.com

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

    Doubling down on sustainability innovation in Kendall Square