Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
Google Scholar
Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).
Google Scholar
Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).
Google Scholar
Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Google Scholar
Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
Google Scholar
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
Google Scholar
Ellis, E. C., Goldewikj, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).
Google Scholar
Rosegrant, M. W., Ringler, C. & Zhu, T. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).
Google Scholar
Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).
Google Scholar
Lee, R. Y., Seitzinger, S. & Mayorga, E. Land-based nutrient loading to LMEs: a global watershed perspective on magnitudes and sources. Environ. Dev. 17, 220–229 (2016).
Google Scholar
Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
Google Scholar
McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).
Google Scholar
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
Google Scholar
Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).
Google Scholar
Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).
Google Scholar
Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).
Google Scholar
Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).
Google Scholar
Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).
Google Scholar
Halpern, B. S. et al. Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).
Google Scholar
Béné, C. et al. Feeding 9 billion by 2050—putting fish back on the menu. Food Secur. 7, 261–274 (2015).
Google Scholar
Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2013).
Google Scholar
Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).
Google Scholar
Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).
Google Scholar
Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products (UNESCO-IHE, 2010).
Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).
Google Scholar
Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).
Google Scholar
Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).
Google Scholar
Kuempel, C. D. et al. Integrating life cycle and impact assessments to map food’s cumulative environmental footprint. One Earth 3, 65–78 (2020).
Google Scholar
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
Google Scholar
Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).
Google Scholar
Judd, A. D., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).
Google Scholar
IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).
Google Scholar
FAO The State of World Fisheries and Aquaculture 2020 (FAO, 2020).
Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).
Google Scholar
FAOSTAT Database: New Food Balances (FAO, 2020); http://www.fao.org/faostat/en/#data/FBS
FAOSTAT Database: Production, Crops (FAO, 2020); http://www.fao.org/faostat/en/#data/QC
Dong, F. et al. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA–DEA approach. Renew. Agric. Food Syst. 31, 524–539 (2016).
Google Scholar
Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).
Google Scholar
Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).
Google Scholar
Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).
Google Scholar
Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).
Google Scholar
Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 16, 29–35 (2018).
Google Scholar
Williams, D. R., Phalan, B., Feniuk, C., Green, R. E. & Balmford, A. Carbon storage and land-use strategies in agricultural landscapes across three continents. Curr. Biol. 28, 2500–2505.e4 (2018).
Google Scholar
Paul, B. G. & Vogl, C. R. Impacts of shrimp farming in Bangladesh: challenges and alternatives. Ocean Coastal Manage. 54, 201–211 (2011).
Google Scholar
Ahmed, N., Cheung, W. W. L., Thompson, S. & Glaser, M. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy 82, 68–75 (2017).
Google Scholar
FAOSTAT Database: Livestock Primary (FAO, 2020); http://www.fao.org/faostat/en/#data/QL
Ramankutty, N., Ricciardi, V., Mehrabi, Z. & Seufert, V. Trade-offs in the performance of alternative farming systems. Agric. Econ. 50, 97–105 (2019).
Google Scholar
FAOSTAT Database: Detailed Trade Matrix (FAO, 2020); http://www.fao.org/faostat/en/#data/TM
Fisheries & Aquaculture—Fishery Statistical Collections—Fishery Commodities and Trade (FAO, 2019); http://www.fao.org/fishery/statistics/global-commodities-production/en
International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010, version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).
Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).
Google Scholar
Petz, K. et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Change 29, 223–234 (2014).
Google Scholar
Global Fishing Watch. Fishing effort. Fleet daily, v2 100th degree. (2021). https://globalfishingwatch.org/dataset-and-code-fishing-effort/
Verdegem, M. C. J., Bosma, R. H. & Verreth, J. A. J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22, 101–113 (2006).
Google Scholar
Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23, GB0A04 (2009).
Google Scholar
Bouwman, A. F., Van Drecht, G. & Van der Hoek, K. W. Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere 15, 137–155 (2005).
Bouwman, A., Boumans, L. J. M. & Batjes, N. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 8-1–8-14 (2002).
Google Scholar
FAOSTAT Database: Inputs, Fertilizers by Nutrient (FAO, 2020); http://www.fao.org/faostat/en/#data/RFN
Heffer, P., Gruere, A. & Roberts, T. Assessment of fertilizer use by crop at the global level 2014–2014/15, International Fertilizer Association (2017).
Fertilizer Use by Crop 5th edn (FAO, IFA & IFDC, 2002).
Islam, Md. S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48–61 (2005).
Google Scholar
Wang, J., Beusen, A. H. W., Liu, X. & Bouwman, A. F. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ. Sci. Technol. 54, 1464–1474 (2020).
Google Scholar
Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).
Google Scholar
Gavrilova, O. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 10, Intergovernmental Panel on Climate Change (IPCC); Review Editors on Overview: Dario Gómez (Argentina) and William Irving (USA) (2019).
Seafood Carbon Emissions Tool, Lisa Max, Robert Parker, Peter Tyedmers, editors; (2020); http://seafoodco2.dal.ca/
Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).
Google Scholar
IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).
Google Scholar
Global Livestock Environmental Assessment Model, GLEAM, v.2.0.121 (FAO, 2018).
Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquacult. Rep. 15, 100216 (2019).
Jackson, A. Fish in-fish out (FIFO) explained. Aquacult. Eur. 34, 5–10 (2009).
Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).
Google Scholar
Frazier, M. et al. Global food system pressure data. https://knb.ecoinformatics.org/view/doi:10.5063/F1V69H1B
Source: Ecology - nature.com