in

The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity

  • Pigliucci, M. Evolution of phenotypic plasticity: Where are we going now?. Trends Ecol. Evol. 20, 481–486 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Xue, B. & Leibler, S. Benefits of phenotypic plasticity for population growth in varying environments. PNAS 115, 12745–12750 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scheiner, S. Selection experiments and the study of phenotypic plasticity. J. Evol. Biol. 15, 889–898 (2002).

    Article 

    Google Scholar 

  • Garland, T. & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).

    PubMed 
    Article 

    Google Scholar 

  • DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).

    Article 

    Google Scholar 

  • Gu, L. et al. Induction and reversibility of Ceriodaphnia cornuta horns under varied intensity of predation risk and their defensive effectiveness against Chaoborus larvae. Freshw. Biol. 66, 1200–1210 (2021).

    Article 

    Google Scholar 

  • Van Buskirk, J. & Steiner, U. The fitness costs of developmental canalization and plasticity. J. Evol. Biol. 22, 852–860 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, C. et al. Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural Daphnia population. Mol. Ecol. 30, 2285–2297 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. Lond. B Biol. Sci. 20, 25 (2009).

    Google Scholar 

  • Tsuji, H., Taoka, K.-I. & Shimamoto, K. Regulation of flowering in rice: Two florigen genes, a complex gene network, and natural variation. Curr. Opin. Plant Biol. 14, 45–52 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: Roles of chance and necessity. Nat. Rev. Genet. 9, 951–963 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nozawa, M., Kawahara, Y. & Nei, M. Genomic drift and copy number variation of sensory receptor genes in humans. Proc. Natl. Acad. Sci. 104, 20421–20426 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raible, F. et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev. Biol. 300, 461–475 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abbott, L. F. & Nelson, S. B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Andersen, S. L. Trajectories of brain development: Point of vulnerability or window of opportunity?. Neurosci. Biobehav. Rev. 27, 3–18 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex. BMC Dev. Biol. 10, 1 (2010).

    Article 
    CAS 

    Google Scholar 

  • Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Boidron-Metairon, I. F. Morphological plasticity in laboratory-reared echinoplutei of Dendraster excentricus (Eschscholtz) and Lytechinus variegatus (Lamarck) in response to food conditions. J. Exp. Mar. Biol. Ecol. 119, 31–41 (1988).

    Article 

    Google Scholar 

  • Miner, B. G. Larval feeding structure plasticity during pre-feeding stages of echinoids: Not all species respond to the same cues. J. Exp. Mar. Biol. Ecol. 343, 158–165 (2007).

    Article 

    Google Scholar 

  • Chaturvedi, A. et al. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat. Commun. 12, 4306 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Byrne, M., Sewell, M. & Prowse, T. Nutritional ecology of sea urchin larvae: Influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).

    Article 

    Google Scholar 

  • Sewell, M. A., Cameron, M. J. & McArdle, B. H. Developmental plasticity in larval development in the echinometrid sea urchin Evechinus chloroticus with varying food ration. J. Exp. Mar. Biol. Ecol. 309, 219–237 (2004).

    Article 

    Google Scholar 

  • Adams, D. K., Sewell, M. A., Angerer, R. C. & Angerer, L. M. Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. Nat. Commun. 2, 592 (2011).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Williamson, D. The Origins of Larvae (Springer, 2003).

    Book 

    Google Scholar 

  • McIntyre, D. C., Lyons, D. C., Martik, M. & McClay, D. R. Branching out: Origins of the sea urchin larval skeleton in development and evolution. Genesis 52, 173–185 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Littlewood, D. & Smith, A. A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philos. Trans. R. Soc. B Biol. Sci. 347, 213–234 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kroh, A. & Smith, A. B. The phylogeny and classification of post-Palaeozoic echinoids. J. Syst. Paleontol. 8, 147–212 (2010).

    Article 

    Google Scholar 

  • Smith, A. B. et al. Testing the molecular clock: Molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol. Biol. Evol. 23, 1832–1851 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reitzel, A. M. & Heyland, A. Reduction in morphological plasticity in echinoid larvae: Relationship of plasticity with maternal investment and food availability. Evol. Ecol. Res. 9, 109–121 (2007).

    Google Scholar 

  • McAlister, J. S. Evolutionary responses to environmental heterogeneity in Central American echinoid larvae: Plastic versus constant phenotypes. Evolution 62, 1358–1372 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Soars, N. A., Prowse, T. A. A. & Byrne, M. Overview of phenotypic plasticity in echinoid larvae, ‘Echinopluteus transversus’ type vs typical echinoplutei. Mar. Ecol. Progress Ser. 383, 113–125 (2009).

    ADS 
    Article 

    Google Scholar 

  • Eckert, G. L. A novel larval feeding strategy of the tropical sand dollar, Encope michelini (Agassiz): Adaptation to food limitation and an evolutionary link between planktotrophy and lecithotrophy. J. Exp. Mar. Biol. Ecol. 187, 103–128 (1995).

    Article 

    Google Scholar 

  • Miner, B. G. & Vonesh, J. R. Effects of fine grain environmental variability on morphological plasticity. Ecol. Lett. 7, 794–801 (2004).

    Article 

    Google Scholar 

  • Strathmann, R. R., Fenaux, L. & Strathmann, M. F. Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 20, 972–986 (1992).

    Article 

    Google Scholar 

  • Poorbagher, H., Lamare, M. D., Barker, M. F. & Rayment, W. Relative importance of parental diet versus larval nutrition on development and phenotypic plasticity of Pseudechinus huttoni larvae (Echinodermata: Echinoidea). Mar. Biol. Res. 6, 302–314 (2010).

    Article 

    Google Scholar 

  • Bertram, D. F. & Strathmann, R. R. Effects of maternal and larval nutrition on growth and form of planktotrophic larvae. Ecology 79, 315–327 (1998).

    Article 

    Google Scholar 

  • Miner, B. G. Evolution of feeding structure plasticity in marine invertebrate larvae: A possible trade-off between arm length and stomach size. J. Exp. Mar. Biol. Ecol. 315, 117–125 (2005).

    Article 

    Google Scholar 

  • McAlister, J. S. Egg size and the evolution of phenotypic plasticity in larvae of the echinoid genus Strongylocentrotus. J. Exp. Mar. Biol. Ecol. 352, 306–316 (2007).

    Article 

    Google Scholar 

  • McIntyre, D. C., Seay, N. W., Croce, J. C. & McClay, D. R. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 140, 4881–4889 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adomako-Ankomah, A. & Ettensohn, C. A. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation. Development 140, 4214–4225 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duloquin, L., Lhomond, G. & Gache, C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134, 2293–2302 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ettensohn, C. A. Lessons from a gene regulatory network: Echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136, 11–21 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rafiq, K., Shashikant, T., McManus, C. J. & Ettensohn, C. A. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 141, 950–961 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Röttinger, E. et al. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135, 353–365 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cavalieri, V., Spinelli, G. & Di Bernardo, M. Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos. Dev. Biol. 262, 107–118 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123–138 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ryu, S. et al. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr. Biol. 17, 873–880 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smidt, M. P., Smits, S. M. & Burbach, J. P. H. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur. J. Pharmacol. 480, 75–88 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rast, J. P., Smith, L. C., Loza-Coll, M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952–956 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hibino, T. et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 300, 349–365 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zigler, K. S. & Lessios, H. Speciation on the coasts of the new world: Phylogeography and the evolution of bindin in the sea urchin genus Lytechinus. Evolution 58, 1225–1241 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maggio, R. & Millan, M. J. Dopamine D2–D3 receptor heteromers: Pharmacological properties and therapeutic significance. Curr. Opin. Pharmacol. 10, 100–107 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT engineers design surfaces that make water boil more efficiently

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils