in

The expansion of tree plantations across tropical biomes

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 
    Article 

    Google Scholar 

  • Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    CAS 
    Article 

    Google Scholar 

  • Payn, T. et al. Changes in planted forests and future global implications. Ecol. Manag. 352, 57–67 (2015).

    Article 

    Google Scholar 

  • Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).

    Article 

    Google Scholar 

  • Hurni, K. & Fox, J. The expansion of tree-based boom crops in mainland Southeast Asia: 2001 to 2014. J. Land Use Sci. 13, 198–219 (2018).

    Article 

    Google Scholar 

  • Vijay, V. et al. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).

  • Heilmayr, R., Echeverría, C. & Lambin, E. F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701–709 (2020).

    Article 

    Google Scholar 

  • le Maire, G., Dupuy, S., Nouvellon, Y., Loos, R. A. & Hakamada, R. Mapping short-rotation plantations at regional scale using MODIS time series: case of eucalypt plantations in Brazil. Remote Sens. Environ. 152, 136–149 (2014).

    Article 

    Google Scholar 

  • Wang, M. M. H., Carrasco, L. R. & Edwards, D. P. Reconciling rubber expansion with biodiversity conservation. Curr. Biol. 30, 3825–3832 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS 
    Article 

    Google Scholar 

  • Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019).

  • Sloan, S., Meyfroidt, P., Rudel, T. K., Bongers, F. & Chazdon, R. The forest transformation: planted tree cover and regional dynamics of tree gains and losses. Glob. Environ. Change 59, 101988 (2019).

    Article 

    Google Scholar 

  • Petersen, R. et al. Mapping Tree Plantations with Multispectral Imagery: Preliminary Results for Seven Tropical Countries (WRI, 2016).

  • Erb, K.-H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2017).

    Article 

    Google Scholar 

  • Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).

    Article 

    Google Scholar 

  • Miettinen, J. et al. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. GCB Bioenergy 4, 908–918 (2012).

    Article 

    Google Scholar 

  • Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

  • Puyravaud, J.-P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Conserv. Lett. 3, 390–394 (2010).

    Article 

    Google Scholar 

  • Fagan, M. E. et al. Mapping pine plantations in the southeastern U.S. using structural, spectral, and temporal remote sensing data. Remote Sens. Environ. 216, 415–426 (2018).

    Article 

    Google Scholar 

  • Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).

    CAS 
    Article 

    Google Scholar 

  • Global Forest Resources Assessment 2020 (FAO, 2020).

  • FAOSTAT Agricultural Statistics Database (FAO, 2019); http://faostat.fao.org/site/291/default.aspx

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hurni, K., Schneider, A., Heinimann, A., Nong, D. H. & Fox, J. Mapping the expansion of boom crops in mainland Southeast Asia using dense time stacks of Landsat data. Remote Sens. 9, 320 (2017).

    Article 

    Google Scholar 

  • Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).

    Article 

    Google Scholar 

  • Torbick, N., Ledoux, L., Salas, W. & M. Zhao, M. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 8, 236 (2016).

  • Azizan, F. A., Kiloes, A. M., Astuti, I. S. & Abdul Aziz, A. Application of optical remote sensing in rubber plantations: a systematic review. Remote Sens. 13, 429 (2021).

    Article 

    Google Scholar 

  • Bégué, A. et al. Remote sensing and cropping practices: a review. Remote Sens. 10, 99 (2018).

    Article 

    Google Scholar 

  • Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. 3, 115009 (2021).

  • Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).

    Article 

    Google Scholar 

  • Féret, J.-B. & Asner, G. P. Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sens. Environ. 115, 2415–2422 (2011).

    Article 

    Google Scholar 

  • Poortinga, A. et al. Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification. Remote Sens. 11, 831 (2019).

    Article 

    Google Scholar 

  • Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 044029 (2011).

    Article 

    Google Scholar 

  • Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Data. 13, 1211–1231 (2021).

    Article 

    Google Scholar 

  • Ordway, E. M., Naylor, R. L., Nkongho, R. N. & Lambin, E. F. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 10, 114 (2019).

    CAS 
    Article 

    Google Scholar 

  • Heilmayr, R., Echeverría, C., Fuentes, R. & Lambin, E. F. A plantation-dominated forest transition in Chile. Appl. Geogr. 75, 71–82 (2016).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).

    Article 

    Google Scholar 

  • Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).

    Article 

    Google Scholar 

  • Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article 

    Google Scholar 

  • Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).

  • Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    CAS 
    Article 

    Google Scholar 

  • Fagan, M. E., Reid, J. L., Holland, M. B., Drew, J. G. & Zahawi, R. A. How feasible are global forest restoration commitments? Conserv. Lett. 13, e12700 (2020).

    Article 

    Google Scholar 

  • Malkamäki, A. et al. A systematic review of the socio-economic impacts of large-scale tree plantations, worldwide. Glob. Environ. Change 53, 90–103 (2018).

    Article 

    Google Scholar 

  • Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).

    Article 

    Google Scholar 

  • Noojipady, P. et al. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth Syst. Dynam. 8, 749–771 (2017).

  • Bullock, E. L., Woodcock, C. E., Souza, C. Jr. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).

    Article 

    Google Scholar 

  • Sloan, S. & Sayer, J. A. Forest Ecology and Management Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Ecol. Manag. 352, 134–145 (2015).

    Article 

    Google Scholar 

  • Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).

    CAS 
    Article 

    Google Scholar 

  • Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).

    Article 

    Google Scholar 

  • Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018).

    CAS 
    Article 

    Google Scholar 

  • Li, W., Goodchild, M. F. & Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 27, 1227–1250 (2013).

    Article 

    Google Scholar 

  • Asner, G. P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 22, 3855–3862 (2001).

    Article 

    Google Scholar 

  • Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gutiérrez-Vélez, V. H. & DeFries, R. Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon. Remote Sens. Environ. 129, 154–167 (2013).

    Article 

    Google Scholar 

  • Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).

    Article 

    Google Scholar 

  • Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).

    Article 

    Google Scholar 

  • Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31 (2014).

    Article 

    Google Scholar 

  • Torres, R. et al. GMES Sentinel-1 mission. Remote Sens. Environ. 120, 9–24 (2012).

    Article 

    Google Scholar 

  • Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Article 

    Google Scholar 

  • World Database on Protected Areas User Manual 1.4 (UNEP-WCMC, 2016).

  • AutoML: Automatic Machine Learning (H2O.ai, 2020); https://h2o-release.s3.amazonaws.com/h2o/rel-yau/5/docs-website/h2o-docs/automl.html

  • Healey, S. P. et al. Mapping forest change using stacked generalization: an ensemble approach. Remote Sens. Environ. 204, 717–728 (2018).

    Article 

    Google Scholar 

  • Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 25002 (2019).

    Article 

    Google Scholar 

  • Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Article 

    Google Scholar 

  • Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).

    Article 

    Google Scholar 

  • Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

    Article 

    Google Scholar 

  • Stehman, S. V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 35, 4923–4939 (2014).

    Article 

    Google Scholar 

  • Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).

    Article 

    Google Scholar 

  • Database of Global Administrative Areas (GADM) v.3.6 (GADM, 2018); https://gadm.org/download_country_v3.html

  • Hijmans, R. J., Williams, E., Vennes, C. M. & Hijmans, M. R. J. Package ‘geosphere’ version 1.5-10. Spherical trigonometry (2017).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).

  • Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).


  • Source: Ecology - nature.com

    Migration Summit addresses education and workforce development in displacement

    Indigenous knowledge reveals history of fire-prone California forest