Andersen EC, Bloom JS, Gerke JP, Kruglyak L (2014) A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 10(2):e1004156. https://doi.org/10.1371/journal.pgen.1004156
Andersen EC, Shimko TC, Crissman JR, Ghosh R, Bloom JS, Seidel HS et al. (2015) A powerful new quantitative genetics platform, combining caenorhabditis elegans high-throughput fitness assays with a large collection of recombinant strains. G3 5(5):911–920. https://doi.org/10.1534/g3.115.017178
Google Scholar
Angilletta MJ, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Naturalist 162:3
Atkinson D (1994) Temperature and organism size–a biological law for ectotherms? Adv Ecol Res 25:1–58
Azevedo RBR, French V, Partridge L (2002) Temperature modulates epidermal cell size in Drosophila melanogaster. J Insect Physiol 48:231–237
Google Scholar
Azevedo RBR, James AC, McCabe J, Partridge L (1998) Latitudinal variation of wing: thorax size and wing-aspect ration in Drosophila melanogaster. Evolution 52(5):1353–1362
Google Scholar
Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01
Beldade P, Mateus ARA, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20:1347–1363. https://doi.org/10.1111/j.1365-294X.2011.05016.x
Google Scholar
Bochdanovits Z, Van Der Klis H, De Jong G (2003) Covariation of larval gene expression and adult body size in natural populations of Drosophila melanogaster. Mol Biol Evolution 20(11):1760–1766. https://doi.org/10.1093/molbev/msg179
Google Scholar
Brenner S (1974) Genetics of the Caenorhabditis elegans. ChemBioChem 4(8):683–687. https://doi.org/10.1002/cbic.200300625
Google Scholar
Callahan HS, Dhanoolal N, Ungerer MC (2005) Plasticity genes and plasticity costs: a new approach using an Arabidopsis recombinant inbred population. N Phytologist 166(1):129–140. https://doi.org/10.1111/j.1469-8137.2005.01368.x
Google Scholar
Carta D, Villanova L, Costacurta S, Patelli A, Poli I, Vezzù S et al. (2011) Method for optimizing coating properties based on an evolutionary algorithm approach. Anal Chem 83(16):6373–6380. https://doi.org/10.1021/ac201337e
Google Scholar
Czarnoleski M, Kramarz P, Malek D, Drobniak SM (2017) Genetic components in a thermal developmental plasticity of the beetle Tribolium castaneum. J Therm Biol 68:55–62. https://doi.org/10.1016/j.jtherbio.2017.01.015
Google Scholar
Dupuis J, Siegmund D (1999) Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151(1):373–386
Google Scholar
Ellers J, Driessen G (2011) Genetic correlation between temperature-induced plasticity of life-history traits in a soil arthropod. Evolut Ecol 25:473–484. https://doi.org/10.1007/s10682-010-9414-1
Google Scholar
Fischer K, Bauerfeind SS, Fiedler K (2006) Temperature-mediated plasticity in egg and body size in egg size-selected lines of a butterfly. J Therm Biol 31:347–354. https://doi.org/10.1016/j.jtherbio.2006.01.006
Google Scholar
Gaertner BE, Phillips PC (2010) Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res 92(5–6):331–348. https://doi.org/10.1017/S0016672310000601
Google Scholar
Gao AW, Sterken MG, uit de Bos J, van Creij J, Kamble R, Snoek BL et al. (2018) Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res 28(9):1296–1308. https://doi.org/10.1101/gr.232322.117
Google Scholar
Ghosh SM, Testa ND, Shingleton AW (2013) Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc Biol Sci 280(1760):20130174. https://doi.org/10.1098/rspb.2013.0174
Gutteling EW, Doroszuk A, Riksen JAG, Prokop Z, Reszka J, Kammenga JE (2007a) Environmental influence on the genetic correlations between life-history traits in Caenorhabditis elegans. Heredity 98:206–213. https://doi.org/10.1038/sj.hdy.6800929
Google Scholar
Gutteling EW, Riksen JAG, Bakker J, Kammenga JE (2007b) Mapping phenotypic plasticity and genotype – environment interactions affecting life-history traits in Caenorhabditis elegans. Heredity 98:28–37. https://doi.org/10.1038/sj.hdy.6800894
Google Scholar
Jovic K, Sterken MG, Grilli J, Bevers RPJ, Rodriguez M, Riksen JAG, et al. (2017) Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans. PLoS One 12:e0189445
Kammenga JE, Doroszuk A, Riksen JAG, Hazendonk E, Spiridon L, Petrescu AJ et al. (2007) A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3. PLoS Genet 3(3):0358–0366. https://doi.org/10.1371/journal.pgen.0030034
Google Scholar
Kang MH, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ et al. (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723. https://doi.org/10.1534/genetics.107.080101
Google Scholar
Klok CJ, Harrison JF (2013) The temperature size rule in Arthropods: independent of macro-environmental variables but size dependent. Integr Comp Biol 53(4):557–570. https://doi.org/10.1093/icb/ict075
Google Scholar
Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R et al. (2014) Marker-based estimation of heritability in immortal populations. Genetics 199(2):379–398. https://doi.org/10.1534/genetics.114.167916
Google Scholar
Lafuente E, Beldade P (2019) Genomics of developmental plasticity in animals. Front Genet 10:1–18. https://doi.org/10.3389/fgene.2019.00720
Google Scholar
Lafuente E, Duneau D, Beldade P (2018) Genetic basis of thermal plasticity variation in Drosophila melanogaster body size. PLoS Genet 14(9):1–24. https://doi.org/10.1371/journal.pgen.1007686
Google Scholar
Li Y, Álvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JAG et al. (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2(12):2155–2161. https://doi.org/10.1371/journal.pgen.0020222
Google Scholar
Nagashima T, Ishiura S, Suo S (2017) Regulation of body size in Caenorhabditis elegans: effects of environmental factors and the nervous system. Int J Developmental Biol 61(6–7):367–374. https://doi.org/10.1387/ijdb.160352ss
Google Scholar
Nakad R, Snoek LB, Yang W, Ellendt S, Schneider F, Mohr TG et al. (2016) Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1. BMC Genomics 17(1):1–20. https://doi.org/10.1186/s12864-016-2603-8
Google Scholar
Norry FM, Loeschcke VR (2002) Longevity and resistance to cold stress in cold-stress selected lines and their controls in Drosophila melanogaster. J Evolut Biol 15:775–783
Google Scholar
Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’ s hidden substrate. Nat Rev Genet 15(4):247–258. https://doi.org/10.1038/nrg3688
Google Scholar
Peng IF, Berke BA, Zhu Y, Lee WH, Chen W, Wu CF (2007) Temperature-dependent developmental plasticity of drosophila neurons: cell-autonomous roles of membrane excitability, Ca2+ influx, and cAMP signaling. J Neurosci 27(46):12611–12622. https://doi.org/10.1523/JNEUROSCI.2179-07.2007
Google Scholar
Petersen C, Dirksen P, Schulenburg H (2015) Why we need more ecology for genetic models such as C. elegans. Trends Genet 31(3):120–127. https://doi.org/10.1016/j.tig.2014.12.001
Google Scholar
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Reddy KC, Andersen EC, Kruglyak L, Kim DH (2009) A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323(5912):382–384. https://doi.org/10.1126/science.1166527
Google Scholar
Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372
Rockman MV, Skrovanek SM, Kruglyak L (2010) Selection at linked sites shapes. Science 330:372–376. https://doi.org/10.1126/science.1194208
Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE (2012) Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 47(8):581–587. https://doi.org/10.1016/j.exger.2012.05.005
Google Scholar
Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J (2018) Why does the magnitude of genotype-by-environment interaction vary? Ecol Evolution 8(12):6342–6353. https://doi.org/10.1002/ece3.4128
Google Scholar
Scheiner S (1993) Plasticity as a selectable trait: reply to via. Am Soc Naturalist 142(2):371–373
Google Scholar
Sgro C, Hoffmann A (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248. https://doi.org/10.1038/sj.hdy.6800532
Snoek BL, Sterken MG, Bevers RPJ, Volkers RJM, van Hof A, Brenchley R, et al. (2017) Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans. BMC Genomics 18:500. https://doi.org/10.1186/s12864-017-3899-8
Snoek BL, Volkers RJM, Nijveen H, Petersen C, Dirksen P, Sterken MG, et al. (2019) A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol 17:24
Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG et al. (2014) Widespread genomic incompatibilities in Caenorhabditis elegans. G3: Genes, Genomes, Genet 4(10):1813–1823. https://doi.org/10.1534/g3.114.013151
Google Scholar
Snoek LB, Sterken MG, Hartanto M, van Zuilichem AJ, Kammenga JE, de Ridder D et al. (2020) WormQTL2: an interactive platform for systems genetics in Caenorhabditis elegans. Database 2020:baz149. https://doi.org/10.1093/database/baz149
Steigenga MJ, Zwaan BJ, Brakefield PM, Fischer K (2005) The evolutionary genetics of egg size plasticity in a butterfly. J Evolut Biol 18:281–289. https://doi.org/10.1111/j.1420-9101.2004.00855.x
Google Scholar
Sterken MG, Bevers RPJ, Volkers RJM, Riksen JAG, Kammenga JE, Snoek BL (2020) Dissecting the eQTL micro-architecture in Caenorhabditis elegans. Front Genet 11(Nov):1–15. https://doi.org/10.3389/fgene.2020.501376
Google Scholar
Sterken MG, Plaat LVB, Van Der Riksen JAG, Rodriguez M, Schmid T, Hajnal A, et al. (2017) Ras/MAPK modifier loci revealed by eQTL in Caenorhabditis elegans. G3 (Bethesda) 7:3185–3193. https://doi.org/10.1534/g3.117.1120
Sterken MG, Snoek LB, Kammenga JE, Andersen EC (2015) The laboratory domestication of Caenorhabditis elegans. Trends Genet 31(5):224–231. https://doi.org/10.1016/j.tig.2015.02.009
Google Scholar
Têtard-jones C, Kertesz M, Preziosi R (2011) Quantitative trait loci mapping of phenotypic plasticity and genotype-environment interactions in plant and insect performance. Philos Trans R Soc B: Biol Sci 366:1569
Google Scholar
Thompson OA, Snoek LB, Nijveen H, Sterken MG, Volkers RJM, Brenchley R et al. (2015) Remarkably divergent regions punctuate the genome assembly of the Caenorhabditis elegans Hawaiian strain CB4856. Genetics 200(3):975–989. https://doi.org/10.1534/genetics.115.175950
Google Scholar
Van Voorhies WA (1996) Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution 50(3):1259–1264. https://doi.org/10.1111/j.1558-5646.1996.tb02366.x
Google Scholar
Via S, Gomulkiewicz R, de Jong G, Scheiner SM, Schlichting CD, van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evolution 10:5
Google Scholar
Viñuela A, Snoek LB, Riksen JAG, Kammenga JE (2010) Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res 20(7):929–937. https://doi.org/10.1101/gr.102160.109
Google Scholar
Viñuela A, Snoek LB, Riksen JAG, Kammenga JE (2011) Gene expression modifications by temperature-toxicants interactions in Caenorhabditis elegans. PLoS One 6(9):e24676. https://doi.org/10.1371/journal.pone.0024676
Wickham H (2011) Ggplot2. Wiley Interdiscip Rev: Computational Stat 3(2):180–185. https://doi.org/10.1002/wics.147
Google Scholar
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R et al. (2019) Welcome to the Tidyverse. J Open Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686
Google Scholar
Source: Ecology - nature.com