Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328(5982), 1164–1168. https://doi.org/10.1126/science.1187512 (2010).
Google Scholar
Dirzo, R. et al. Defaunation in the anthropocene. Science 345(6195), 401–406. https://doi.org/10.1126/science.1251817 (2014).
Google Scholar
Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2020.615419 (2021).
Google Scholar
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471(7336), 51–57. https://doi.org/10.1038/nature09678 (2011).
Google Scholar
Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. https://doi.org/10.1126/sciadv.1400253 (2015).
Google Scholar
Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. U.S.A. 117(24), 13596–13602. https://doi.org/10.1073/pnas.1922686117 (2020).
Google Scholar
McGowan, P. J., Traylor-Holzer, K. & Leus, K. IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv. Lett. 10(3), 361–366. https://doi.org/10.1111/conl.12285 (2016).
Google Scholar
Clout, M. N. & Merton, D. V. Saving the Kakapo: The conservation of the world’s most peculiar parrot. Bird Conserv. Int. 8(3), 281–296. https://doi.org/10.1017/s0959270900001933 (1998).
Google Scholar
Milinkovitch, M. C. et al. Genetic analysis of a successful repatriation programme: Giant Galápagos tortoises. Proc. R. Soc. B Biol. Sci. 271(1537), 341–345. https://doi.org/10.1098/rspb.2003.2607 (2004).
Google Scholar
Ryder, O. A. & Wedemeyer, E. A. A cooperative breeding programme for the Mongolian wild horse Equus przewalskii in the United States. Biol. Conserv. 22(4), 259–271. https://doi.org/10.1016/0006-3207(82)90021-0 (1982).
Google Scholar
Mallinson, J. J. C. Conservation breeding programmes: An important ingredient for species survival. Biodivers. Conserv. 4(6), 617–635. https://doi.org/10.1007/bf00222518 (1995).
Google Scholar
Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Developing the science of reintroduction biology. Conserv. Biol. 21(2), 303–312. https://doi.org/10.1111/j.1523-1739.2006.00627.x (2007).
Google Scholar
Bowkett, A. E. Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conserv. Biol. 23(3), 773–776. https://doi.org/10.1111/j.1523-1739.2008.01157.x (2009).
Google Scholar
Shan, L. et al. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Mol. Biol. Evol. 31(10), 2663–2671. https://doi.org/10.1093/molbev/msu210 (2014).
Google Scholar
Fischer, J. & Lindenmayer, D. An assessment of the published results of animal relocations. Biol. Conserv. 96(1), 1–11. https://doi.org/10.1016/s0006-3207(00)00048-3 (2014).
Google Scholar
Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. U.S.A. 109(1), 238–242. https://doi.org/10.1073/pnas.1111073109 (2011).
Google Scholar
Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12(7), 1305–1317. https://doi.org/10.1111/eva.12649 (2018).
Google Scholar
Ralls, K., Brugger, K. & Ballou, J. Inbreeding and juvenile mortality in small populations of ungulates. Science 206(4422), 1101–1103. https://doi.org/10.1126/science.493997 (1979).
Google Scholar
Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Evol. Syst. 18(1), 237–268. https://doi.org/10.1146/annurev.es.18.110187.001321 (1987).
Google Scholar
Ralls, K., Ballou, J. D. & Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2(2), 185–193. https://doi.org/10.1111/j.1523-1739.1988.tb00169.x (1988).
Google Scholar
Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Evol. Syst. 31(1), 139–162. https://doi.org/10.1146/annurev.ecolsys.31.1.139 (2000).
Google Scholar
Frankham, R. Introduction to Conservation Genetics 2nd edn. (Cambridge University Press, 2010).
Google Scholar
Laikre, L. Conservation genetics of Nordic carnivores: Lessons from zoos. Hereditas 130(3), 203–216. https://doi.org/10.1111/j.1601-5223.1999.00203.x (2004).
Google Scholar
Gomendio, M., Cassinello, J. & Roldan, E. R. S. A comparative study of ejaculate traits in three endangered ungulates with different levels of inbreeding: Fluctuating asymmetry as an indicator of reproductive and genetic stress. Proc. R. Soc. B Biol. Sci. 267(1446), 875–882. https://doi.org/10.1098/rspb.2000.1084 (2000).
Google Scholar
Swinnerton, K. J., Groombridge, J. J., Jones, C. G., Burn, R. W. & Mungroo, Y. Inbreeding depression and founder diversity among captive and free-living populations of the endangered pink pigeon Columba mayeri. Anim. Conserv. 7(4), 353–364. https://doi.org/10.1017/s1367943004001556 (2004).
Google Scholar
Farquharson, K. A., Hogg, C. J. & Grueber, C. E. Offspring survival changes over generations of captive breeding. Nat. Commun. https://doi.org/10.1038/s41467-021-22631-0 (2021).
Google Scholar
Kleiman, D. G., Thompson, K. V. & Baer, C. K. Wild Mammals in Captivity: Principles and Techniques for Zoo Management 2nd edn. (University of Chicago Press, 2021).
Ralls, K. & Ballou, J. D. Captive breeding and reintroduction. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 662–667 (Academic Press, 2013). https://doi.org/10.1016/b978-0-12-384719-5.00268-9.
Google Scholar
Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x (2003).
Google Scholar
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U.S.A. 101(42), 15261–15264. https://doi.org/10.1073/pnas.0403809101 (2003).
Google Scholar
Willi, Y., van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37(1), 433–458. https://doi.org/10.1146/annurev.ecolsys.37.091305.110145 (2006).
Google Scholar
Habel, J. C., Husemann, M., Finger, A., Danley, P. D. & Zachos, F. E. The relevance of time series in molecular ecology and conservation biology. Biol. Rev. 89(2), 484–492. https://doi.org/10.1111/brv.12068 (2013).
Google Scholar
Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318(5847), 100–103. https://doi.org/10.1126/science.1145621 (2007).
Google Scholar
Purohit, D. et al. Genetic effects of long-term captive breeding on the endangered pygmy hog. PeerJ 9, e12212. https://doi.org/10.7717/peerj.12212 (2021).
Google Scholar
Hahn, E. E. & Culver, M. Genetic diversity and structure in Arizona pronghorn following conservation efforts. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.498 (2021).
Google Scholar
Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Gen. 10(3), 195–205. https://doi.org/10.1038/nrg2526 (2009).
Google Scholar
Wang, J., Santiago, E. & Caballero, A. Prediction and estimation of effective population size. Heredity 117(4), 193–206. https://doi.org/10.1038/hdy.2016.43 (2016).
Google Scholar
O’Gara, W., Yoakum, J. D. & McCabe, R. E. Pronghorn: Ecology and Managment (University Press of Colorado, 2004).
Janis, C. M., Scott, K. M. & Jacobs, L. L. Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulate like Mammals Vol. 1 (Cambridge University Press, 2005).
Nelson, E. W. Status of the Pronghorn Antelope, 1922–1924 (U.S Department Agriculture Bulletin, 1925).
Google Scholar
O’Gara, B. W. & McCabe, R. E. From exploitation to conservation. In Pronghorn: Ecology and Management (eds O’Gara, B. W. & Yoakum, J. D.) 41–73 (University Press Colorado, 2004).
Cancino, J., Ortega-Rubio, A. & Sanchez-Pacheco, J. A. Status of an endangered subspecies: The peninsular pronghorn at Baja California. J. Arid Environ. 32(4), 463–467. https://doi.org/10.1006/jare.1996.0039 (1996).
Google Scholar
Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54(2), 123–138. https://doi.org/10.1641/0006-3568 (2004).
Google Scholar
Medellín, R. A. et al. History, ecology, and conservation of the pronghorn antelope, bighorn sheep, and black bear in Mexico. In Biodiversity, Ecosystems, and Conservation in Northern Mexico (eds Cartron, J.-L. et al.) 387–405 (Oxford University Press, 2005).
Lee, T. E., Bickham, J. W. & Scott, M. D. Mitochondrial DNA and allozyme analysis of North American pronghorn populations. J. Wildl. Manag. 58(2), 307–318. https://doi.org/10.2307/3809396 (1994).
Google Scholar
IUCN SSC Antelope Specialist Group. Antilocapra americana ssp. peninsularis. The IUCN Red List of Threatened Species 2021: e.T1679A200726719. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T1679A200726719.en (2021).
SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental– Especies nativas de México de flora y fauna silvestres– Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio– Lista de especies en riesgo. Diario Oficial de la Federación 30 diciembre (2010).
U. S. Fish and Wildlife Service. Recovery Plan for the Sonoran pronghorn (Antilocapra americana sonoriensis), Second Revision. (U.S. Fish and Wildlife Service, Southwest Region, Albuquerque, 2016).
Cancino, J., Sanchez-Sotomayor, V. & Castellanos, R. From the field: Capture, hand-raising, and captive management of peninsular pronghorn. Wildl. Soc. Bull. 33(1), 61–65. https://doi.org/10.2193/0091-7648 (2005).
Google Scholar
Horne, J. S., Hervert, J. J., Woodruff, S. P. & Mills, L. S. Evaluating the benefit of captive breeding and reintroductions to endangered Sonoran pronghorn. Biol. Conserv. 196, 133–146. https://doi.org/10.1016/j.biocon.2016.02.005 (2016).
Google Scholar
CONANP. Programa de Acción para la Conservación de la Especie: Berrendo (Antilocapra americana), 2009 año del berrendo. Secretaria del Medio Ambiente y Recursos Naturales (SEMARNAT). www.conanp.gob.mx (2009).
Cancino, J., Rodríguez-Estrella, R. & Miller, P. Using population viability analysis for management recommendations of the endangered endemic peninsular pronghorn. Acta Zool. Mex. 26(1), 173–189 (2010).
Danoff-Burg, J. A. & Mulroe, K. Peninsular Pronghorn Species Action Plan (2021) (in press).
Stephen, C. L. et al. Population genetic analysis of sonoran pronghorn (Antilocapra americana sonoriensis). J. Mammal. 86(4), 782–792. https://doi.org/10.1644/1545-1542 (2005).
Google Scholar
Stephen, C. L., Whittaker, D. G., Gillis, D., Cox, L. L. & Rhodes, O. E. Genetic consequences of reintroductions: An example from oregon pronghorn antelope (Antilocapra americana). J. Wildl. Manag. 69(4), 1463–1474. https://doi.org/10.2193/0022-541x (2005).
Google Scholar
Barnow-Meyer, K. & Byers, J. Genetic diversity and gene flow in Yellowstone Basin pronghorn (Antilocapra americana). UW Natl. Parks Serv. Res. Station Annu. Rep. 31, 65–72. https://doi.org/10.13001/uwnpsrc.2008.3705 (2008).
Google Scholar
LaCava, M. E. F. et al. Pronghorn population genomics show connectivity in the core of their range. J. Mammal. 101(4), 1061–1071. https://doi.org/10.1093/jmammal/gyaa054 (2020).
Google Scholar
Klimova, A., Munguia-Vega, A., Hoffman, J. I. & Culver, M. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J. Mammal. 95(6), 1263–1277. https://doi.org/10.1644/13-mamm-a-321 (2014).
Google Scholar
Hahn, E. E., Klimova, A., Munguía-Vega, A., Clark, K. B. & Culver, M. Use of museum specimens to refine historical pronghorn subspecies boundaries. J. Wildl. Manag. 84(3), 524–533. https://doi.org/10.1002/jwmg.21810 (2020).
Google Scholar
Axelrod, D. I. The evolution of desert vegetation in western North America. Carnegie Instit. Wash. Publ. 590, 215–306 (1950).
Dolby, G. A., Bennett, S. E. K., Lira-Noriega, A., Wilder, B. T. & Munguía-Vega, A. Assessing the geological and climatic forcing of biodiversity and evolution Surrounding the Gulf of California. J. Southwest. 57, 391–455. https://doi.org/10.1353/jsw.2015.0005 (2015).
Google Scholar
Gedir, J. V., Cain, J. W., Harris, G. & Turnbull, T. T. Effects of climate change on long-term population growth of pronghorn in an arid environment. Ecosphere 6(10), art189. https://doi.org/10.1890/es15-00266.1 (2015).
Google Scholar
Cornuet, J. M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30(8), 1187–1189. https://doi.org/10.1093/bioinformatics/btt763 (2014).
Google Scholar
Islas-Espinoza, M. & de las Heras, A. Peninsular pronghorn conservation: Too many paradigms, too few indicators. In Sustainability Indicators in Practice (eds Latawiec, A. & Agol, D.) 126–145 (De Gruyter Open Poland, 2015). https://doi.org/10.1515/9783110450507-012.
Google Scholar
Willoughby, J. R. et al. The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Mol. Ecol. 24(1), 98–110. https://doi.org/10.1111/mec.13020 (2014).
Google Scholar
Crow, J. F. & Kimura, M. An Introduction in Population Genetics Theory (Harper and Row, 1970).
Google Scholar
Falconer, D. S. Introduction to Quantitative Genetics 3rd edn. (Longman Scientific and Technical, 1989).
Ballou, J. D. Strategies for maintaining genetic diversity in captive populations through reproductive technology. Zoo Biol. 3(4), 311–323. https://doi.org/10.1002/zoo.1430030404 (1984).
Google Scholar
Ballou, J. D. & Lacy, R. C. Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In Population Management for Survival and Recovery (eds Ballou, J. D. et al.) 76–111 (Columbia Press, 1995).
Montgomery, M. E. et al. Minimizing kinship in captive breeding programs. Zoo Biol. 16(5), 377–389. https://doi.org/10.1002/(sici)1098-2361 (1997).
Google Scholar
Dunn, S. J., Clancey, E., Waits, L. P. & Byers, J. A. Inbreeding depression in pronghorn (Antilocapra americana) fawns. Mol. Ecol. 20(23), 4889–4898. https://doi.org/10.1111/j.1365-294x.2011.05327.x (2011).
Google Scholar
Hoffman, J. I. et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc. Natl. Acad. Sci. U.S.A. 111(10), 3775–3780. https://doi.org/10.1073/pnas.1318945111 (2014).
Google Scholar
Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl. Acad. Sci. U.S.A. 118(48), e2104642118. https://doi.org/10.1073/pnas.2104642118 (2021).
Google Scholar
Zoonomia Consortium. A comparative genomics multitool for scientific discovery and conservation. Nature 587(7833), 240–245. https://doi.org/10.1038/s41586-020-2876-6 (2020).
Google Scholar
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 19(4), 220–234. https://doi.org/10.1038/nrg.2017.109 (2018).
Google Scholar
Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. https://doi.org/10.1186/s13059-018-1520-3 (2018).
Google Scholar
Hohenlohe, P. A. & Rajora, O. P. Population Genomics: Wildlife (Springer, 2020).
Chalmers, G. A. & Barrett, M. W. Capture myopathy in pronghorns in Alberta, Canada. J. Am. Vet. Med. Assoc. 171(9), 918–923 (1977).
Google Scholar
Sotelo-Gallardo, H., Contreras Balderas, A. J. & Espinosa Treviño, A. Comparación de dos métodos de liberación del berrendo, Antilocapra americana (Artiodactyla: Antilocapridae) en Coahuila, México. Rev. Biol. Trop. 65(3), 1208. https://doi.org/10.15517/rbt.v65i3.29447 (2017).
Google Scholar
Breed, D. et al. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. https://doi.org/10.1093/conphys/coz027 (2019).
Google Scholar
Snyder, N. F. et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 10(2), 338–348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x (1996).
Google Scholar
Bonebrake, T. C., Christensen, J., Boggs, C. L. & Ehrlich, P. R. Population decline assessment, historical baselines, and conservation. Conserv. Lett. 3(6), 371–378. https://doi.org/10.1111/j.1755-263x.2010.00139.x (2010).
Google Scholar
Grismer, L. L. & McGuire, J. A. The oases of central Baja California, Mexico. Part I. A preliminary account of the relict mesophilic herpetofauna and the status of the oases. Bull. South. Calif. Acad. Sci. 92, 2–24 (1993).
Welsh, H. H., Clark, W. H., Franco-Vizcaíno, E. & Valdéz-Villavicencio, J. H. Herpetofauna associated with palm oases across the Californian-Sonoran transition in Northern Baja California, Mexico. Southwest. Nat. 55(4), 581–585. https://doi.org/10.1894/pas-15.1 (2010).
Google Scholar
Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: The Plaids and Stripes Hypothesis. Biol. Rev. 94(1), 328–352. https://doi.org/10.1111/brv.12456 (2018).
Google Scholar
Brown, D. E., Warnecke, D. & McKinney, T. Effects of midsummer drought on mortality of doe pronghorn (Antilocapra americana). Southwest. Nat. 51(2), 220–225. https://doi.org/10.1894/0038-4909 (2006).
Google Scholar
Simpson, D. C., Harveson, L. A., Brewer, C. E., Walser, R. E. & Sides, A. R. Influence of precipitation on pronghorn demography in Texas. J. Wildl. Manag. 71(3), 906–910. https://doi.org/10.2193/2005-753 (2007).
Google Scholar
McKinney, T., Brown, D. E. & Allison, L. Winter precipitation and recruitment of pronghorns in Arizona. Southwest. Nat. 53(3), 319–325. https://doi.org/10.1894/cj-147.1 (2008).
Google Scholar
Otte, A. Partners save the Sonoran pronghorn. Endang. Species Bull. 31, 22–23 (2006).
McCullough, D. R. & Barrett, R. H. Wildlife 2001: Populations (Springer, 1992).
Google Scholar
Percie Du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLOS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).
Google Scholar
Carling, M. D., Passavant, C. W. & Byers, J. A. DNA microsatellites of pronghorn (Antilocapra americana). Mol. Ecol. Not. 3(1), 10–11. https://doi.org/10.1046/j.1471-8286.2003.00334.x (2002).
Google Scholar
Dunn, S. J. et al. Ten polymorphic microsatellite markers for pronghorn (Antilocapra americana). Conserv. Genet. Resour. 2(1), 81–84. https://doi.org/10.1007/s12686-009-9166-9 (2010).
Google Scholar
Munguia-Vega, A., Klimova, A. & Culver, M. New microsatellite loci isolated via next-generation sequencing for two endangered pronghorn from the Sonoran Desert. Conserv. Genet. Resour. 5(1), 125–127. https://doi.org/10.1007/s12686-012-9749-8 (2012).
Google Scholar
Boutin-Ganache, I., Raposo, M., Raymond, M. & Deschepper, C. F. M13-Tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31(1), 25–28. https://doi.org/10.2144/01311bm02 (2001).
Google Scholar
Amos, W. et al. Automated binning of microsatellite alleles: Problems and solutions. Mol. Ecol. Not. 7(1), 10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x (2006).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.
Jombart, T. & Ahmed, I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).
Google Scholar
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).
Google Scholar
Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5(4), 384–387. https://doi.org/10.1111/2041-210x.12158 (2014).
Google Scholar
Agapow, P. M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Not. 1(1–2), 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).
Google Scholar
Paradis, E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26(3), 419–420. https://doi.org/10.1093/bioinformatics/btp696 (2010).
Google Scholar
Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Not. 5(1), 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).
Google Scholar
Aparicio, J. M., Ortego, J. & Cordero, P. J. What should we weigh to estimate heterozygosity, alleles or loci?. Mol. Ecol. 15(14), 4659–4665. https://doi.org/10.1111/j.1365-294x.2006.03111.x (2006).
Google Scholar
Alho, J. S., Välimäki, K. & Merilä, J. Rhh: An R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Mol. Ecol. Res. 10(4), 720–722. https://doi.org/10.1111/j.1755-0998.2010.02830.x (2010).
Google Scholar
Stoffel, M. A. et al. inbreedR: An R package for the analysis of inbreeding based on genetic markers. Methods Ecol. Evol. 7(11), 1331–1339. https://doi.org/10.1111/2041-210x.12588 (2016).
Google Scholar
Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Res. 11(1), 141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x (2010).
Google Scholar
Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89(3), 135–153. https://doi.org/10.1017/s0016672307008798 (2007).
Google Scholar
Marshall, T. C. et al. Estimating the prevalence of inbreeding from incomplete pedigrees. Proc. R. Soc. B Biol. Sci. 269(1500), 1533–1539. https://doi.org/10.1098/rspb.2002.2035 (2002).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035. https://doi.org/10.1093/genetics/162.4.2025 (2002).
Google Scholar
Bertorelle, G., Benazzo, A. & Mona, S. ABC as a flexible framework to estimate demography over space and time: Some cons, many pros. Mol. Ecol. 19(13), 2609–2625. https://doi.org/10.1111/j.1365-294x.2010.04690.x (2010).
Google Scholar
Fagundes, N. J. R. et al. Statistical evaluation of alternative models of human evolution. Proc. Natl. Acad. Sci. U.S.A. 104(45), 17614–17619. https://doi.org/10.1073/pnas.0708280104 (2007).
Google Scholar
Source: Ecology - nature.com