in

The genomic basis of the plant island syndrome in Darwin’s giant daisies

  • Darwin, C. On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life. (1859).

  • Wallace, A. R. The Malay Archipelago: The Land of the Orang-utan and the Bird of Paradise; a Narrative of Travel, with Studies of Man and Nature (Courier Corporation, 1962).

  • Mayr, E. Systematics and the Origin of Species from the Viewpoint of a Zoologist (Columbia Uni. Press, 1942).

  • Emerson, B. C. Speciation on islands: what are we learning? Biol. J. Linn. Soc. Lond. 95, 47–52 (2008).

    Google Scholar 

  • Lomolino, M. V., Riddle, B. R., Whittaker, R. J., Brown, J. H. & Lomolino, M. V. Biogeography (Sunderland, Mass: Sinauer Associates, 2017).

  • Baeckens, S. & Van Damme, R. The island syndrome. Curr. Biol. 30, R338–R339 (2020).

    CAS 

    Google Scholar 

  • Burns, K. C. Evolution in Isolation: The Search for an Island Syndrome in Plants (Cambridge University Press, 2019).

  • Blaschke, J. D. & Sanders, R. W. Preliminary insights into the phylogeny and speciation of scalesia (asteraceae), galápagos islands. J. Bot. Res. Inst. Tex. 3, 177–191 (2009).

    Google Scholar 

  • Fernández-Mazuecos, M. et al. The radiation of Darwin’s giant daisies in the Galápagos Islands. Curr. Biol. 30, 4989–4998.e7 (2020).

    Google Scholar 

  • Crawford, D. J. et al. Genetic diversity in Asteraceae endemic to oceanic islands: Baker’s Law and polyploidy. Syst. Evol. Biogeogr. Compos 139, 151 (2009).

    Google Scholar 

  • Eliasson, U. Studies in Galápagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1–117 (1974).

    Google Scholar 

  • Itow, S. Phytogeography and ecology of Scalesia (compositae) endemic to the Galapagos islands! Pac. Sci. 49, 17–30 (1995).

    Google Scholar 

  • Stöcklin, J. Darwin and the plants of the Galápagos-Islands. Bauhinia 21, 33–48 (2009).

    Google Scholar 

  • Ono, M. Chromosome number of Scalesia (Compositae), an endemic genus of the Galapagos Islands. J. Jpn. Bot. 42, 353–360 (1967).

    Google Scholar 

  • Eliasson, U. Studies in Galapagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1–117 (1974).

    Google Scholar 

  • Meudt, H. M. et al. Polyploidy on islands: its emergence and importance for diversification. Front. Plant Sci. 12, 637214 (2021).

    PubMed Central 

    Google Scholar 

  • Spring, O., Heil, N. & Vogler, B. Sesquiterpene lactones and flavanones in Scalesia species. Phytochemistry 46, 1369–1373 (1997).

    CAS 

    Google Scholar 

  • Schilling, E. E., Panero, J. L. & Eliasson, U. H. Evidence from chloroplast DNA restriction site analysis on the relationships of Scalesia (Asteraceae: Heliantheae). Am. J. Bot. 81, 248–254 (1994).

    Google Scholar 

  • Peona, V., Weissensteiner, M. H. & Suh, A. How complete are ‘complete’ genome assemblies?-An avian perspective. Mol. Ecol. Resour. 18, 1188–1195 (2018).

    CAS 

    Google Scholar 

  • Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Reyes-Chin-Wo, S. et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8, 14953 (2017).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Bellinger, M. R., Datlof, E., Selph, K. E., Gallaher, T. J. & Knope, M. L. A genome for Bidens hawaiensis: a member of a hexaploid Hawaiian plant adaptive radiation. J. Hered. https://doi.org/10.1093/jhered/esab077 (2022).

  • Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 76–80 (2018).

    CAS 

    Google Scholar 

  • Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Mitros, T. et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat. Commun. 11, 5442 (2020).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Funk, V. A. Systematics, Evolution, and Biogeography of Compositae (International Association for Plant Taxonomy, 2009).

  • Julca, I. et al. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol 18, 148 (2020).

    PubMed Central 

    Google Scholar 

  • te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 109, 19–45 (2012).

    Google Scholar 

  • Mandel, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Whittaker, R. J., School of Geography Robert J Whittaker & Fernandez-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (OUP Oxford, 2007).

  • Diop, S. I. et al. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. Plant J. 101, 1378–1396 (2020).

    CAS 

    Google Scholar 

  • Li, F.-W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Lang, D. et al. ThePhyscomitrella patenschromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515–533 (2018).

    CAS 

    Google Scholar 

  • Bird, K. A., VanBuren, R., Puzey, J. R. & Edger, P. P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. N. Phytol. 220, 87–93 (2018).

    Google Scholar 

  • Freeling, M., Scanlon, M. J. & Fowler, J. E. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35, 110–118 (2015).

    CAS 

    Google Scholar 

  • Wolfe, K. H. Yesterday’s polyploids and the mystery of diploidization. Nat. Rev. Genet. 2, 333–341 (2001).

    CAS 

    Google Scholar 

  • Bird, K. A. et al. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. N. Phytol. 230, 354–371 (2021).

    CAS 

    Google Scholar 

  • Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113 (2020).

    CAS 

    Google Scholar 

  • Renny-Byfield, S., Gong, L., Gallagher, J. P. & Wendel, J. F. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol. Biol. Evol. 32, 1063–1071 (2015).

    CAS 

    Google Scholar 

  • Douglas, G. M. et al. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc. Natl Acad. Sci. USA 112, 2806–2811 (2015).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Barrier, M., Baldwin, B. G., Robichaux, R. H. & Purugganan, M. D. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Mol. Biol. Evol. 16, 1105–1113 (1999).

    CAS 

    Google Scholar 

  • Catchen, J. M., Conery, J. S. & Postlethwait, J. H. Automated identification of conserved synteny after whole-genome duplication. Genome Res. 19, 1497–1505 (2009).

    CAS 
    PubMed Central 

    Google Scholar 

  • Őszi, E. et al. E2FB interacts with RETINOBLASTOMA RELATED and regulates cell proliferation during leaf development. Plant Physiol. 182, 518–533 (2020).

    Google Scholar 

  • Berckmans, B. et al. Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. Plant Physiol. 157, 1440–1451 (2011).

    CAS 
    PubMed Central 

    Google Scholar 

  • Kojima, S. et al. Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiol. 52, 1259–1273 (2011).

    CAS 

    Google Scholar 

  • Husbands, A. Y., Benkovics, A. H., Nogueira, F. T. S., Lodha, M. & Timmermans, M. C. P. The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. Plant Cell 27, 3321–3335 (2016).

    Google Scholar 

  • Crane, R. A. et al. Negative regulation of age-related developmental leaf senescence by the IAOx pathway, PEN1, and PEN3. Front. Plant Sci. 10, 1202 (2019).

    PubMed Central 

    Google Scholar 

  • Fu, M. et al. AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence in Arabidopsis. Plant Sci. 285, 44–54 (2019).

    CAS 

    Google Scholar 

  • Zhang, B., Jia, J., Yang, M., Yan, C. & Han, Y. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis. Mol. Cells 34, 367–374 (2012).

    PubMed Central 

    Google Scholar 

  • Ma, Z., Wu, W., Huang, W. & Huang, J. Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression. Photosynth. Res. 126, 301–310 (2015).

    CAS 

    Google Scholar 

  • Wang, Z. et al. Two chloroplast proteins suppress drought resistance by affecting ROS production in guard cells. Plant Physiol. 172, 2491–2503 (2016).

    CAS 
    PubMed Central 

    Google Scholar 

  • Meurer, J. et al. PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. Plant J. 92, 400–413 (2017).

    CAS 

    Google Scholar 

  • Holding, D. The chloroplast and leaf developmental mutant, pale cress, exhibits light-conditional severity and symptoms characteristic of its ABA deficiency. Ann. Bot. 86, 953–962 (2000).

    CAS 

    Google Scholar 

  • Meurer, J., Grevelding, C., Westhoff, P. & Reiss, B. The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana. Mol. Gen. Genet. MGG 258, 342–351 (1998).

    CAS 

    Google Scholar 

  • Lawesson, J. E. Stand-level dieback and regeneration of forests in the Galápagos Islands. Temporal and Spatial Patterns of Vegetation Dynamics 87–93. https://doi.org/10.1007/978-94-009-2275-4_10 (1988).

  • Endo, M., Kudo, D., Koto, T., Shimizu, H. & Araki, T. Light-dependent destabilization of PHL in Arabidopsis. Plant Signal. Behav. 9, e28118 (2014).

    PubMed Central 

    Google Scholar 

  • Endo, M., Tanigawa, Y., Murakami, T., Araki, T. & Nagatani, A. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc. Natl Acad. Sci. USA 110, 18017–18022 (2013).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat. Cell Biol. 13, 616–622 (2011).

    CAS 

    Google Scholar 

  • Basset, G. J. C. et al. Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J. 40, 453–461 (2004).

    CAS 

    Google Scholar 

  • Smeekens, S. Faculty Opinions recommendation of Large-scale analysis of mRNA translation states during sucrose starvation in arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1032260.373846 (2006).

  • Oravecz, A. et al. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18, 1975–1990 (2006).

    CAS 
    PubMed Central 

    Google Scholar 

  • Dal Bosco, C. et al. Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J. Biol. Chem. 279, 1060–1069 (2004).

    CAS 

    Google Scholar 

  • Tan, Y.-F., O’Toole, N., Taylor, N. L. & Millar, A. H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 152, 747–761 (2010).

    CAS 
    PubMed Central 

    Google Scholar 

  • Kim, J. Y. et al. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J. 50, 439–451 (2007).

    CAS 

    Google Scholar 

  • ten Hove, C. A. et al. Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. Plant Mol. Biol. 76, 69–83 (2011).

    PubMed Central 

    Google Scholar 

  • Jakoby, M. J. et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol. 148, 1583–1602 (2008).

    CAS 
    PubMed Central 

    Google Scholar 

  • Fox, A. R. et al. Plasma membrane aquaporins interact with the endoplasmic reticulum resident VAP27 proteins at ER-PM contact sites and endocytic structures. N. Phytol. 228, 973–988 (2020).

    CAS 

    Google Scholar 

  • Wang, P. et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun. 10, 5132 (2019).

    ADS 
    PubMed Central 

    Google Scholar 

  • Bittner, A., Hause, B. & Baier, M. Cold-priming causes oxylipin dampening during the early cold and light response of Arabidopsis thaliana. J. Exp. Bot. https://doi.org/10.1093/jxb/erab314 (2021).

  • Kuki, Y., Ohno, R., Yoshida, K. & Takumi, S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 150, 71–79 (2020).

    CAS 

    Google Scholar 

  • Czarnocka, W. et al. FMO1 is involved in excess light stress-induced signal transduction and cell death signaling. Cells 9, 2163 (2020).

  • Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L. & Strand, A. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol. 144, 1391–1406 (2007).

    CAS 
    PubMed Central 

    Google Scholar 

  • Castells, E. et al. The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress. EMBO J. 30, 1162–1172 (2011).

    CAS 
    PubMed Central 

    Google Scholar 

  • Lahari, T., Lazaro, J., Marcus, J. M. & Schroeder, D. F. RAD7 homologues contribute to Arabidopsis UV tolerance. Plant Sci. 277, 267–277 (2018).

    CAS 

    Google Scholar 

  • Kim, A. et al. Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell Rep. 39, 473–487 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Chen, D., Molitor, A., Liu, C. & Shen, W.-H. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 20, 1332–1344 (2010).

    CAS 

    Google Scholar 

  • Shen, L. et al. The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis. Development 141, 1303–1312 (2014).

    CAS 

    Google Scholar 

  • Li, J., Wang, Z., Hu, Y., Cao, Y. & Ma, L. Polycomb group proteins RING1A and RING1B regulate the vegetative phase transition in Arabidopsis. Front. Plant Sci. 8, 867 (2017).

    PubMed Central 

    Google Scholar 

  • An, Z. et al. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. Plant J. 103, 1010–1024 (2020).

    CAS 

    Google Scholar 

  • Gómez-Zambrano, Á. et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes. Mol. Plant 11, 815–832 (2018).

    Google Scholar 

  • Glass, M., Barkwill, S., Unda, F. & Mansfield, S. D. Endo-β−1,4-glucanases impact plant cell wall development by influencing cellulose crystallization. J. Integr. Plant Biol. 57, 396–410 (2015).

    CAS 

    Google Scholar 

  • Markakis, M. N. et al. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biol. 12, 1–11 (2012).

  • Noutoshi, Y. et al. Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol. Biol. 62, 29–42 (2006).

    CAS 

    Google Scholar 

  • Fukunaga, S. et al. Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. Plant J. 89, 381–393 (2017).

    CAS 

    Google Scholar 

  • Singh, S., Kailasam, S., Lo, J. & Yeh, K. Histone H3 lysine4 trimethylation‐regulated GRF11 expression is essential for the iron‐deficiency response in Arabidopsis thaliana. N. Phytologist 230, 244–258 (2021).

    CAS 

    Google Scholar 

  • Fal, K. et al. Phyllotactic regularity requires the Paf1 complex in Arabidopsis. Development https://doi.org/10.1242/dev.154369 (2017).

  • He, Y. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev. 18, 2774–2784 (2004).

    CAS 
    PubMed Central 

    Google Scholar 

  • Hoson, T. et al. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol. 16, 91–96 (2014).

    Google Scholar 

  • Xiong, X., Xu, D., Yang, Z., Huang, H. & Cui, X. A single amino-acid substitution at lysine 40 of an Arabidopsis thaliana α-tubulin causes extensive cell proliferation and expansion defects. J. Integr. Plant Biol. 55, 209–220 (2013).

    CAS 

    Google Scholar 

  • Whitewoods, C. D. et al. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr. Biol. 30, 2645–2648 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Galbraith, D. W. et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).

    ADS 
    CAS 

    Google Scholar 

  • Dolezel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plant. 85, 625–631 (1992).

    CAS 

    Google Scholar 

  • Loureiro, J., Rodriguez, E., Dolezel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100, 875–888 (2007).

    CAS 
    PubMed Central 

    Google Scholar 

  • Suda, J. et al. Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann. Bot. 100, 1323–1335 (2007).

    PubMed Central 

    Google Scholar 

  • Greilhuber, J., Dolezel, J., Lysák, M. A. & Bennett, M. D. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 95, 255–260 (2005).

    CAS 
    PubMed Central 

    Google Scholar 

  • Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytom. Part A: J. Int. Soc. Anal. Cytol. 51, 127–128 (2003).

    CAS 

    Google Scholar 

  • Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    CAS 
    PubMed Central 

    Google Scholar 

  • Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    CAS 

    Google Scholar 

  • Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Res. 6, 1287 (2017).

    Google Scholar 

  • Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Bradnam, K. R. et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2, 10 (2013).

    PubMed Central 

    Google Scholar 

  • Smit, A., Hubley, R. & Green, P. RepeatMasker 4.0 (Institute for Systems Biology, 2013).

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Tardaguila, M. et al. Corrigendum: SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 1096 (2018).

    CAS 
    PubMed Central 

    Google Scholar 

  • Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinforma. 12, 491 (2011).

    Google Scholar 

  • Moore, B., Holt, C., Alvarado, A. S. & Yandell, M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome 18, 188–196 (2008).

  • Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    CAS 

    Google Scholar 

  • Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).

    Google Scholar 

  • Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757–763 (2011).

    CAS 

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Google Scholar 

  • Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    CAS 

    Google Scholar 

  • Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).

    CAS 

    Google Scholar 

  • Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    PubMed Central 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    CAS 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

  • Mandel, J. R. et al. A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. Appl. Plant Sci. 2, 1300085 (2014).

  • Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788 (2016).

    CAS 

    Google Scholar 

  • Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).

    Google Scholar 

  • Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    PubMed Central 

    Google Scholar 

  • Delcher, A. L. et al. Alignment of whole genomes. Nucleic Acids Res. 27, 2369–2376 (1999).

    CAS 
    PubMed Central 

    Google Scholar 

  • Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed Central 

    Google Scholar 

  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS 
    PubMed Central 

    Google Scholar 

  • Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019).

    PubMed Central 

    Google Scholar 

  • Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 6, e251 (2020).

    PubMed Central 

    Google Scholar 

  • Laforest, M. et al. A chromosome-scale draft sequence of the Canada fleabane genome. Pest Manag. Sci. 76, 2158–2169 (2020).

    CAS 

    Google Scholar 

  • Liu, B. et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat. Commun. 11, 340 (2020).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    PubMed Central 

    Google Scholar 

  • Cerca, J. et al. The Tetragnatha kauaiensis genome sheds light on the origins of genomic novelty in spiders. Genome Biol. Evol. 13, evab262 (2021).

  • Laetsch, D. R. & Blaxter, M. L. KinFin: software for taxon-aware analysis of clustered protein sequences. G3 7, 3349–3357 (2017).

    CAS 
    PubMed Central 

    Google Scholar 

  • Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    CAS 
    PubMed Central 

    Google Scholar 

  • Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).

    CAS 

    Google Scholar 

  • Lovell, J. T. et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444 (2021).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).

    Google Scholar 

  • Steinbiss, S., Willhoeft, U., Gremme, G. & Kurtz, S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 37, 7002–7013 (2009).

    CAS 
    PubMed Central 

    Google Scholar 

  • Eddy, S. HMMER user’s guide. Dep. Genet., Wash. Univ. Sch. Med. 2, 13 (1992).

    Google Scholar 

  • Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).

    CAS 

    Google Scholar 

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 

    Google Scholar 

  • Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    CAS 

    Google Scholar 

  • De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Google Scholar 

  • Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa1022 (2020).

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS 
    PubMed Central 

    Google Scholar 

  • Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R. Package Version 2, 2010 (2010).

    Google Scholar 

  • Alexa, A. & Rahnenführer, J. Gene set enrichment analysis with topGO. Bioconductor Improv 27, 1–26 (2009).

    Google Scholar 

  • Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).

    Google Scholar 

  • Wu, M., Chatterji, S. & Eisen, J. A. Accounting for alignment uncertainty in phylogenomics. PLoS ONE 7, e30288 (2012).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).

    CAS 
    PubMed Central 

    Google Scholar 

  • Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).

    CAS 

    Google Scholar 

  • Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Making hydrogen power a reality

    Tapping into the million-year energy source below our feet