in

The global spectrum of plant form and function: enhanced species-level trait dataset

  • Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892, https://doi.org/10.1111/j.2007.0030-1299.15559.x (2007).

    Article 

    Google Scholar 

  • Aerts, R. & Chapin, F. S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, Vol 30 30, 1–67 (2000).

    CAS 

    Google Scholar 

  • Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties., (John Wiley & Sons, 2001).

  • Diaz, S. et al. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15, 295–304, https://doi.org/10.1111/j.1654-1103.2004.tb02266.x (2004).

    Article 

    Google Scholar 

  • Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16, 545–556 (2002).

    Article 

    Google Scholar 

  • Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167, https://doi.org/10.1071/bt12225 (2013).

    Article 

    Google Scholar 

  • Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity. (Oxford University Press, 2016).

  • Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).

    Article 

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171, https://doi.org/10.1038/nature16489 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kattge, J. et al. TRY – a global database of plant traits. Global Change Biology 17, 2905–2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x (2011).

    Article 
    ADS 

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188, https://doi.org/10.1111/gcb.14904 (2020).

    Article 
    ADS 

    Google Scholar 

  • Royal Botanic Gardens, Kew. The State of the World’s Plants Report – 2016. (Royal Botanic Gardens, Kew, 2016).

  • Kattge, J. et al. TRY – Categorical Traits Dataset. Data from: TRY – a global database of plant traits. TRY File Archive https://www.try-db.org/TryWeb/Data.php – 3 (2012).

  • Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology 105, 298–309, https://doi.org/10.1111/1365-2745.12698 (2016).

    Article 

    Google Scholar 

  • Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335, https://doi.org/10.1071/bt02124 (2003).

    Article 

    Google Scholar 

  • Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96, 1266–1274, https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).

    Article 

    Google Scholar 

  • Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology 41, 653–663, https://doi.org/10.1111/j.0021-8901.2004.00934.x (2004).

    Article 

    Google Scholar 

  • Adler, P. B. A comparison of livestock grazing effects on sagebrush steppe, USA, and Patagonian steppe, Argentina. PhD thesis, Colorado State University, (2003).

  • Atkin, O. K., Westbeek, M. H. M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf Respiration in Light and Darkness (A Comparison of Slow- and Fast-Growing Poa Species. Plant Physiology 113, 961–965, https://doi.org/10.1104/pp.113.3.961 (1997).

    Article 
    CAS 

    Google Scholar 

  • Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist 176, 375–389, https://doi.org/10.1111/j.1469-8137.2007.02183.x (2007).

    Article 
    CAS 

    Google Scholar 

  • Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554, https://doi.org/10.1007/s004420050889 (1999).

    Article 
    ADS 

    Google Scholar 

  • Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Global Change Biology 9, 895–910, https://doi.org/10.1046/j.1365-2486.2003.00611.x (2003).

    Article 
    ADS 

    Google Scholar 

  • Bahn, M. et al. in Land-use changes in European mountain ecosystems. ECOMONT- Concept and Results (eds A. Cernusca, U. Tappeiner, & N. Bayfield) 247-255 (Blackwell Wissenschaft, Berlin, 1999).

  • Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell and Environment 22, 1281–1296, https://doi.org/10.1046/j.1365-3040.1999.00479.x (1999).

    Article 

    Google Scholar 

  • Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology 20, 565–578, https://doi.org/10.1093/treephys/20.9.565 (2000).

    Article 

    Google Scholar 

  • Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology 23, 865–877, https://doi.org/10.1093/treephys/23.13.865 (2003).

    Article 

    Google Scholar 

  • Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecology Letters 13, 1338–1347, https://doi.org/10.1111/j.1461-0248.2010.01517.x (2010).

    Article 

    Google Scholar 

  • Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Functional Ecology 24, 208–216, https://doi.org/10.1111/j.1365-2435.2009.01600.x (2010).

    Article 

    Google Scholar 

  • Blonder, B. et al. The leaf-area shrinkage effect can bias paleoclimate and ecology research. American Journal of Botany 99, 1756–1763, https://doi.org/10.3732/ajb.1200062 (2012).

    Article 

    Google Scholar 

  • Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049, https://doi.org/10.1093/aobpla/plv049 (2015).

    Article 

    Google Scholar 

  • Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology 101, 981–989, https://doi.org/10.1111/1365-2745.12102 (2013).

    Article 

    Google Scholar 

  • Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecology Letters 14, 91–100, https://doi.org/10.1111/j.1461-0248.2010.01554.x (2010).

    Article 

    Google Scholar 

  • Bond-Lamberty, B., Wang, C. & Gower, S. T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32, 1441–1450, https://doi.org/10.1139/x02-063 (2002).

    Article 

    Google Scholar 

  • Bond-Lamberty, B., Wang, C., Gower, S. T. & Norman, J. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiology 22, 993–1001, https://doi.org/10.1093/treephys/22.14.993 (2002).

    Article 
    CAS 

    Google Scholar 

  • Bond-Lamberty, B., Wang, C. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Canadian Journal of Forest Research 33, 101–105, https://doi.org/10.1139/x02-166 (2003).

    Article 

    Google Scholar 

  • Brown, K. A. et al. Assessing Natural Resource Use by Forest-Reliant Communities in Madagascar Using Functional Diversity and Functional Redundancy Metrics. PLoS ONE 6, e24107, https://doi.org/10.1371/journal.pone.0024107 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecology 16, 244–253, https://doi.org/10.1556/168.2015.16.2.12 (2015).

    Article 

    Google Scholar 

  • Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487, https://doi.org/10.1007/s00442-010-1741-y (2010).

    Article 
    ADS 

    Google Scholar 

  • Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology 101, 128–139, https://doi.org/10.1111/1365-2745.12016 (2012).

    Article 

    Google Scholar 

  • Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment 145, 38–48, https://doi.org/10.1016/j.agee.2011.06.025 (2011).

    Article 

    Google Scholar 

  • Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology 87, S109–S122, https://doi.org/10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2 (2006).

    Article 

    Google Scholar 

  • Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecology 210, 253–261, https://doi.org/10.1007/s11258-010-9753-6 (2010).

    Article 

    Google Scholar 

  • Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany 109, 1047–1053, https://doi.org/10.1093/aob/mcs021 (2012).

    Article 

    Google Scholar 

  • Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology 18, 779–786, https://doi.org/10.1111/j.0269-8463.2004.00900.x (2004).

    Article 

    Google Scholar 

  • Quested, H. M. et al. Decomposition of sub-arctic plants with differenting nitogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221, https://doi.org/10.1890/02-0426 (2003).

    Article 

    Google Scholar 

  • Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling Growth, Allocation and Leaf Attributes in a Wide Range of Woody Plant Species and Types. The Journal of Ecology 84, 755, https://doi.org/10.2307/2261337 (1996).

    Article 

    Google Scholar 

  • Cornelissen, J. H. C., Werger, M. J. A. & CastroDiez, P. vanRheenen, J. W. A. & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science 14, 311, https://doi.org/10.1658/1100-9233(2003)014[0311:ftowpc]2.0.co;2 (2003).

    Article 

    Google Scholar 

  • Castro-Díez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador, P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66, https://doi.org/10.1007/s004420050563 (1998).

    Article 
    ADS 

    Google Scholar 

  • Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255, https://doi.org/10.1007/s004420050725 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cornelissen, J. H. C. An Experimental Comparison of Leaf Decomposition Rates in a Wide Range of Temperate Plant Species and Types. The Journal of Ecology 84, 573, https://doi.org/10.2307/2261479 (1996).

    Article 

    Google Scholar 

  • Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11, 1065–1071, https://doi.org/10.1111/j.1461-0248.2008.01219.x (2008).

    Article 

    Google Scholar 

  • Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist 170, 807–818, https://doi.org/10.1111/j.1469-8137.2006.01712.x (2006).

    Article 

    Google Scholar 

  • Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465–1471, https://doi.org/10.1890/0012-9658(2006)87[1465:attfhf]2.0.co;2 (2006).

    Article 

    Google Scholar 

  • Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10, 135–145, https://doi.org/10.1111/j.1461-0248.2006.01006.x (2007).

    Article 
    CAS 

    Google Scholar 

  • Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79, 109–126, https://doi.org/10.1890/07-1134.1 (2009).

    Article 

    Google Scholar 

  • Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980–992, https://doi.org/10.1111/j.1469-8137.2009.02917.x (2009).

    Article 
    CAS 

    Google Scholar 

  • Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117, https://doi.org/10.1007/s00442-011-1938-8 (2011).

    Article 
    ADS 

    Google Scholar 

  • Craine, J. M., Towne, E. G., Ocheltree, T. W. & Nippert, J. B. Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant and Soil 356, 395–403, https://doi.org/10.1007/s11104-012-1141-7 (2012).

    Article 
    CAS 

    Google Scholar 

  • Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48, https://doi.org/10.1890/es11-00023.1 (2011).

    Article 

    Google Scholar 

  • Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19, https://doi.org/10.1890/04-1075 (2005).

    Article 

    Google Scholar 

  • Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. Forest Ecology and Management 238, 335–346, https://doi.org/10.1016/j.foreco.2006.10.030 (2007).

    Article 

    Google Scholar 

  • Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643–1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).

    Article 

    Google Scholar 

  • Bragazza, L. Conservation priority of Italian Alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodiversity and Conservation 18, 2823–2835, https://doi.org/10.1007/s10531-009-9609-3 (2009).

    Article 

    Google Scholar 

  • Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Botany 122, 11–21, https://doi.org/10.1007/s00035-012-0101-4 (2012).

    Article 

    Google Scholar 

  • de Araujo, A. C. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. (2011).

  • Royal Botanical Gardens KEW. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (accessed May 2011). (2008).

  • Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of Canopy Structure and Leaf-Level Gas Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, Pará, Brazil). Earth Interactions 9, 1–23, https://doi.org/10.1175/ei149.1 (2005).

    Article 
    ADS 

    Google Scholar 

  • Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecology 193, 101–112, https://doi.org/10.1007/s11258-006-9251-z (2007).

    Article 

    Google Scholar 

  • Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment 33, 959–980, https://doi.org/10.1111/j.1365-3040.2010.02119.x (2010).

    Article 
    CAS 

    Google Scholar 

  • Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants. The American Naturalist 168, E103–E122, https://doi.org/10.1086/507879 (2006).

    Article 

    Google Scholar 

  • Fagúndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Botanica Gallica 157, 45–54, https://doi.org/10.1080/12538078.2010.10516188 (2010).

    Article 

    Google Scholar 

  • Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168, 377–385, https://doi.org/10.1111/j.1469-8137.2005.01530.x (2005).

    Article 
    CAS 

    Google Scholar 

  • He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist 170, 835–848, https://doi.org/10.1111/j.1469-8137.2006.01704.x (2006).

    Article 

    Google Scholar 

  • He, J.-S. et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155, 301–310, https://doi.org/10.1007/s00442-007-0912-y (2007).

    Article 
    ADS 

    Google Scholar 

  • Bocanegra, K., Fernández, F. & Galvis, J. Grupos funcionales de arboles en bosques secundarios de la region Bajo Calima (Buenaventura, Colombia). Boletín Científico. Centro de Museos. Museo de Historia Natural 19, 17–40, https://doi.org/10.17151/bccm.2015.19.1.2 (2015).

    Article 

    Google Scholar 

  • Fitter, A. H. & Peat, H. J. The Ecological Flora Database. The Journal of Ecology 82, 415, https://doi.org/10.2307/2261309 (1994).

    Article 

    Google Scholar 

  • Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. Journal of Vegetation Science 23, 208–222, https://doi.org/10.1111/j.1654-1103.2011.01350.x (2011).

    Article 

    Google Scholar 

  • Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27, 1254–1261, https://doi.org/10.1111/1365-2435.12116 (2013).

    Article 

    Google Scholar 

  • Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98, 362–373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).

    Article 

    Google Scholar 

  • Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits. New Phytologist 186, 879–889, https://doi.org/10.1111/j.1469-8137.2010.03228.x (2010).

    Article 
    CAS 

    Google Scholar 

  • Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39, 1757–1771, https://doi.org/10.1111/j.1365-2699.2012.02773.x (2012).

    Article 

    Google Scholar 

  • Garnier, E. et al. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Annals of Botany 99, 967–985, https://doi.org/10.1093/aob/mcl215 (2007).

    Article 

    Google Scholar 

  • Pakeman, R. J., Lepš, J., Kleyer, M., Lavorel, S. & Garnier, E. Relative climatic, edaphic and management controls of plant functional trait signatures. Journal of Vegetation Science 20, 148–159, https://doi.org/10.1111/j.1654-1103.2009.05548.x (2009).

    Article 

    Google Scholar 

  • Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology 96, 355–366 (2008).

    Article 

    Google Scholar 

  • Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).

    Article 

    Google Scholar 

  • Gillison, A. N. & Carpenter, G. A generic plant functional attribute set and grammar for dynamic vegetation description and analysis. Functional Ecology 11, 775–783, https://doi.org/10.1046/j.1365-2435.1997.00157.x (1997).

    Article 

    Google Scholar 

  • Hill, M. O., Preston, C. D. & Roy, D. B. PLANTATT – attributes of British and Irish Plants: status, size, life history, geography and habitats. (Huntingdon: Centre for Ecology and Hydrology, 2004).

  • Green, W. USDA PLANTS Compilation, version 1, 09-02-02. (http://bricol.net/downloads/data/PLANTSdatabase/) NRCS: The PLANTS Database (http://plants.usda.gov, 1 Feb 2009). National Plant Data Center: Baton Rouge, LA 70874-74490 USA (2009).

  • Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biology Letters 8, 882–886, https://doi.org/10.1098/rsbl.2012.0458 (2012).

    Article 

    Google Scholar 

  • Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspectives in Plant Ecology, Evolution and Systematics 14, 243–256, https://doi.org/10.1016/j.ppees.2012.01.004 (2012).

    Article 

    Google Scholar 

  • Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Global Ecology and Biogeography 21, 376–382, https://doi.org/10.1111/j.1466-8238.2011.00677.x (2011).

    Article 

    Google Scholar 

  • Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184, https://doi.org/10.1111/j.1600-0587.2011.06833.x (2011).

    Article 

    Google Scholar 

  • Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015 (2015).

    Article 
    ADS 

    Google Scholar 

  • Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytologist 190, 169–180, https://doi.org/10.1111/j.1469-8137.2010.03579.x (2010).

    Article 
    CAS 

    Google Scholar 

  • He, T., Pausas, J. P., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194, 751–759, https://doi.org/10.1111/j.1469-8137.2012.04079.x (2012).

    Article 

    Google Scholar 

  • He, T., Lamont, B. B. & Downs, K. S. Banksias born to burn. New Phytologist 191, 184–196, https://doi.org/10.1111/j.1469-8137.2011.03663.x. (2011).

    Article 

    Google Scholar 

  • Hickler, T. Plant functional types and community characteristics along environmental gradients on Öland’s Great Alvar (Sweden) Master thesis, University of Lund, Sweden, (1999).

  • Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82, 205–220, https://doi.org/10.1890/11-0416.1 (2012).

    Article 

    Google Scholar 

  • Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1106 (2012).

  • Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755, https://doi.org/10.1038/nature11688 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology 15, 976–991, https://doi.org/10.1111/j.1365-2486.2008.01744.x (2009).

    Article 
    ADS 

    Google Scholar 

  • Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a Digital African Flora. Taxon 54, 457, https://doi.org/10.2307/25065373 (2005).

    Article 

    Google Scholar 

  • Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. Journal of Vegetation Science 12, 327–336, https://doi.org/10.2307/3236846 (2001).

    Article 

    Google Scholar 

  • Koike, F., Clout, M., Kawamichi, M., De Poorter, M. & Iwatsuki, K. Assessment and Control of Biological Invasion Risks. (Cambridge, UK and Shoukadoh Book Sellers, Kyoto, Japan, and IUCN, Gland, Switzerland, 2006).

  • Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80, 401–422, https://doi.org/10.1890/09-1672.1 (2010).

    Article 

    Google Scholar 

  • Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science 322, 580–582, https://doi.org/10.1126/science.1160662 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kühn, I., Durka, W. & Klotz, S. BiolFlor – a new plant-trait database as a tool for plant invasion ecology. Diversity and Distribution 10, 363–365 (2004).

    Article 

    Google Scholar 

  • Otto, B. Merkmale von Samen, Früchten, generativen Germinulen und generativen Diasporen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn (2002).

  • Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656, https://doi.org/10.1890/07-1352.1 (2008).

    Article 

    Google Scholar 

  • Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany 91, 176–181, https://doi.org/10.1139/cjb-2012-0162 (2013).

    Article 

    Google Scholar 

  • Mishkolz, J. M. Selecting and evaluating native forage mixtures for the mixed grass prairie. (University of Saskatchewan, Saskatoon, SK., 2013).

  • Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493–501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2009).

    Article 

    Google Scholar 

  • Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. Journal of Ecology 99, 1489–1499, https://doi.org/10.1111/j.1365-2745.2011.01885.x (2011).

    Article 

    Google Scholar 

  • Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708, https://doi.org/10.5194/bg-6-2677-2009 (2009).

    Article 
    ADS 

    Google Scholar 

  • Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests. Biogeosciences 6, 297–307, https://doi.org/10.5194/bg-6-297-2009 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Patiño, S. et al. Branch xylem density variations across the Amazon Basin. Biogeosciences 6, 545–568, https://doi.org/10.5194/bg-6-545-2009 (2009).

    Article 
    ADS 

    Google Scholar 

  • Louault, F., Pillar, V. D., Aufrère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science 16, 151–160, https://doi.org/10.1111/j.1654-1103.2005.tb02350.x (2005).

    Article 

    Google Scholar 

  • Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590, https://doi.org/10.5194/bg-6-1577-2009 (2009).

    Article 
    ADS 

    Google Scholar 

  • Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic and Applied Ecology 10, 300–308, https://doi.org/10.1016/j.baae.2008.08.004 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity-ecosystem function experiments. Journal of Vegetation Science 25, 248–261, https://doi.org/10.1111/jvs.12068 (2013).

    Article 

    Google Scholar 

  • Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal Variation in the Capacity for Plant Trait Measures to Predict Grassland Carbon and Water Fluxes. Ecosystems 17, 1095–1108, https://doi.org/10.1007/s10021-014-9779-z (2014).

    Article 
    CAS 

    Google Scholar 

  • Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecological Modelling 124, 69–83, https://doi.org/10.1016/s0304-3800(99)00148-9 (1999).

    Article 
    CAS 

    Google Scholar 

  • Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475–1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).

    Article 
    CAS 

    Google Scholar 

  • Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149, 247–264, https://doi.org/10.1046/j.1469-8137.2001.00028.x (2001).

    Article 
    CAS 

    Google Scholar 

  • Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment 25, 343–357, https://doi.org/10.1046/j.0016-8025.2001.00811.x (2002).

    Article 

    Google Scholar 

  • Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology 20, 179–186, https://doi.org/10.1093/treephys/20.3.179 (2000).

    Article 

    Google Scholar 

  • Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology 192, 277–287, https://doi.org/10.1007/s11258-007-9320-y (2007).

    Article 

    Google Scholar 

  • Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell and Environment 26, 163–182, https://doi.org/10.1046/j.1365-3040.2003.00991.x (2003).

    Article 

    Google Scholar 

  • Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters 13, 838–848, https://doi.org/10.1111/j.1461-0248.2010.01476.x (2010).

    Article 

    Google Scholar 

  • Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany 107, 455–465, https://doi.org/10.1093/aob/mcq261 (2011).

    Article 

    Google Scholar 

  • Minden, V. & Kleyer, M. Testing the effect-response framework: key response and effect traits determining above-ground biomass of salt marshes. Journal of Vegetation Science 22, 387–401, https://doi.org/10.1111/j.1654-1103.2011.01272.x (2011).

    Article 

    Google Scholar 

  • Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics 14, 183–192, https://doi.org/10.1016/j.ppees.2012.01.002 (2012).

    Article 

    Google Scholar 

  • Moles, A. T., Falster, D. S., Leishman, M. R. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92, 384–396, https://doi.org/10.1111/j.0022-0477.2004.00880.x (2004).

    Article 

    Google Scholar 

  • Moles, A. T. et al. Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences 102, 10540–10544, https://doi.org/10.1073/pnas.0501473102 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lavergne, S., Muenke, N. J. & Molofsky, J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany 105, 109–116, https://doi.org/10.1093/aob/mcp271 (2009).

    Article 
    CAS 

    Google Scholar 

  • Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences 104, 3883–3888, https://doi.org/10.1073/pnas.0607324104 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. American Journal of Botany 91, 228–246, https://doi.org/10.3732/ajb.91.2.228 (2004).

    Article 
    CAS 

    Google Scholar 

  • Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309, https://doi.org/10.1111/j.1600-0587.2008.05524.x (2009).

    Article 

    Google Scholar 

  • Niinemets, U. Global-Scale Climatic Controls of Leaf Dry Mass per Area, Density, and Thickness in Trees and Shrubs. Ecology 82, 453, https://doi.org/10.2307/2679872 (2001).

    Article 

    Google Scholar 

  • Niinemets, Ü. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144, 35–47, https://doi.org/10.1046/j.1469-8137.1999.00466.x (1999).

    Article 

    Google Scholar 

  • Ciocarlan, V. The illustrated Flora of Romania. Pteridophyta et Spermatopyta. 1141 (Editura Ceres, 2009).

  • Sanda, V., Bita-Nicolae, C. D. & Barabas, N. The flora of spontane and cultivated cormophytes from Romania. (Editura “Ion Borcea”, Bacau, 2003).

  • Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecology Letters 14, 301–312, https://doi.org/10.1111/j.1461-0248.2010.01582.x (2011).

    Article 

    Google Scholar 

  • Ordoñez, J. C. et al. Plant Strategies in Relation to Resource Supply in Mesic to Wet Environments: Does Theory Mirror Nature? The American Naturalist 175, 225–239, https://doi.org/10.1086/649582 (2010).

    Article 

    Google Scholar 

  • Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology, 100413130925016, https://doi.org/10.1890/09-1509 (2010).

  • Pahl, A. T., Kollmann, J., Mayer, A. & Haider, S. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence. Annals of Botany 112, 1921–1930, https://doi.org/10.1093/aob/mct246 (2013).

    Article 

    Google Scholar 

  • Paula, S. et al. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90, 1420–1420, https://doi.org/10.1890/08-1309.1 (2009).

    Article 

    Google Scholar 

  • Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96, 543–552, https://doi.org/10.1111/j.1365-2745.2008.01359.x (2008).

    Article 

    Google Scholar 

  • Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic and Applied Ecology 6, 175–183, https://doi.org/10.1016/j.baae.2005.01.002 (2005).

    Article 

    Google Scholar 

  • Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany 50, 137–148, https://doi.org/10.1016/s0098-8472(03)00019-4 (2003).

    Article 

    Google Scholar 

  • Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biologia Plantarum 50, 373–382, https://doi.org/10.1007/s10535-006-0052-y (2006).

    Article 

    Google Scholar 

  • Ogaya, R. & Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecology 189, 291–299, https://doi.org/10.1007/s11258-006-9184-6 (2006).

    Article 

    Google Scholar 

  • Ogaya, R. & Peñuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecologica 34, 331–338, https://doi.org/10.1016/j.actao.2008.06.005 (2008).

    Article 
    ADS 

    Google Scholar 

  • Sardans, J., Peñuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. Forest Science 54, 513–522 (2008).

    Google Scholar 

  • Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. Journal of Geophysical Research 113, https://doi.org/10.1029/2008jg000795 (2008).

  • Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Global Change Biology 16, 2171–2185, https://doi.org/10.1111/j.1365-2486.2009.02054.x (2009).

    Article 
    ADS 

    Google Scholar 

  • Peñuelas, J. et al. Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii. Journal of Chemical Ecology 36, 1255–1270, https://doi.org/10.1007/s10886-010-9862-7 (2010).

    Article 
    CAS 

    Google Scholar 

  • Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology 27, 1002–1010, https://doi.org/10.1111/1365-2435.12095 (2013).

    Article 

    Google Scholar 

  • Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 141, 337–343, https://doi.org/10.1080/11263500701627695 (2007).

    Article 

    Google Scholar 

  • Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95, 698–706, https://doi.org/10.1111/j.1365-2745.2007.01242.x (2007).

    Article 

    Google Scholar 

  • Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant Functional Types of Woody Species Related to Fire Disturbance in Forest–Grassland Ecotones. Plant Ecology 189, 1–14, https://doi.org/10.1007/s11258-006-9162-z (2006).

    Article 

    Google Scholar 

  • Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14, 323–332, https://doi.org/10.1111/j.1654-1103.2003.tb02158.x (2003).

    Article 

    Google Scholar 

  • Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland-forest mosaic. Journal of Vegetation Science 18, 847–858, https://doi.org/10.1111/j.1654-1103.2007.tb02601.x (2007).

    Article 

    Google Scholar 

  • Blanco, C., Sosinski, E., Santos, B., Silva, M. & Pillar, V. On the overlap between effect and response plant functional types linked to grazing. Community Ecology 8, 57–65, https://doi.org/10.1556/comec.8.2007.1.8 (2007).

    Article 

    Google Scholar 

  • Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. Journal of Vegetation Science 16, 655, https://doi.org/10.1658/1100-9233(2005)016[0655:fpdisb]2.0.co;2 (2005).

    Article 

    Google Scholar 

  • Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora – Morphology, Distribution, Functional Ecology of Plants 202, 27–49, https://doi.org/10.1016/j.flora.2005.11.004 (2007).

    Article 

    Google Scholar 

  • Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565–588, https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).

    Article 

    Google Scholar 

  • Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology 24, 927–936, https://doi.org/10.1111/j.1365-2435.2010.01701.x (2010).

    Article 

    Google Scholar 

  • Price, C. A. & Enquist, B. J. Scaling of mass and morphology in Dicotyledonous leaves: an extension of the WBE model. Ecology 88, 1132–1141, https://doi.org/10.1890/06-1158 (2007).

    Article 

    Google Scholar 

  • Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proceedings of the National Academy of Sciences 104, 13204–13209, https://doi.org/10.1073/pnas.0702242104 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography, no-no, https://doi.org/10.1111/j.1600-0587.2009.05975.x (2009).

  • Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212, https://doi.org/10.1007/s00442-009-1291-3 (2009).

    Article 
    ADS 

    Google Scholar 

  • Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11, 793–801, https://doi.org/10.1111/j.1461-0248.2008.01185.x (2008).

    Article 

    Google Scholar 

  • Cavender-Bares, J., Sack, L. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology 27, 611–620, https://doi.org/10.1093/treephys/27.4.611 (2007).

    Article 

    Google Scholar 

  • Coomes, D. A., Heathcote, S., Godfrey, E. R., Shepherd, J. J. & Sack, L. Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters 4, 302–306, https://doi.org/10.1098/rsbl.2008.0094 (2008).

    Article 

    Google Scholar 

  • Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology 21, 1063–1071, https://doi.org/10.1111/j.1365-2435.2007.01323.x (2007).

    Article 

    Google Scholar 

  • Dunbar‐Co, S., Sporck, Margaret, J. & Sack, L. Leaf Trait Diversification and Design in Seven Rare Taxa of the Hawaiian Plantago Radiation. International Journal of Plant Sciences 170, 61–75, https://doi.org/10.1086/593111 (2009).

    Article 

    Google Scholar 

  • Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Functional Ecology 24, 731–740, https://doi.org/10.1111/j.1365-2435.2010.01724.x (2010).

    Article 

    Google Scholar 

  • Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation. Biotropica 0, 070606001740001-???, https://doi.org/10.1111/j.1744-7429.2007.00325.x (2007).

    Article 

    Google Scholar 

  • Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400, https://doi.org/10.1007/s00442-006-0604-z (2006).

    Article 
    ADS 

    Google Scholar 

  • Nakahashi, C. D., Frole, K. & Sack, L. Bacterial Leaf Nodule Symbiosis in Ardisia (Myrsinaceae): Does it Contribute to Seedling Growth Capacity. Plant Biology 7, 495–500, https://doi.org/10.1055/s-2005-865853 (2005).

    Article 
    CAS 

    Google Scholar 

  • Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology 35, 725, https://doi.org/10.1071/fp08149 (2008).

    Article 

    Google Scholar 

  • Sack, L. Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation. Oikos 107, 110–127, https://doi.org/10.1111/j.0030-1299.2004.13184.x (2004).

    Article 

    Google Scholar 

  • Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491, https://doi.org/10.1890/05-0710 (2006).

    Article 

    Google Scholar 

  • Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist 167, 403–413, https://doi.org/10.1111/j.1469-8137.2005.01432.x (2005).

    Article 

    Google Scholar 

  • Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell and Environment 26, 1343–1356, https://doi.org/10.1046/j.0016-8025.2003.01058.x (2003).

    Article 

    Google Scholar 

  • Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees. American Journal of Botany 93, 829–839, https://doi.org/10.3732/ajb.93.6.829 (2006).

    Article 

    Google Scholar 

  • Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell & Environment 31, 1803–1812, https://doi.org/10.1111/j.1365-3040.2008.01884.x (2008).

    Article 

    Google Scholar 

  • Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, https://doi.org/10.1890/ES10-00175.1 (2011).

  • Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE. Perspectives in Plant Ecology, Evolution and Systematics 9, 53–70, https://doi.org/10.1016/j.ppees.2007.08.002 (2007).

    Article 

    Google Scholar 

  • Schweingruber, F. H. & Landolt, W. The Xylem Database. (Swiss Federal Research Institute WSL, 2005).

  • Schweingruber, F. H. & Poschlod, P. Growth rings in herbs and shrubs: Life span, age determination and stem anatomy. Forest, Snow and Landscape Research 79, 195–415 (2005).

    Google Scholar 

  • Sheremetev, S. N. Herbs on the soil moisture gradient (water relations and the structural-functional organization). (KMK Scientific Press Ltd, Moscow, 2005).

  • Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. Journal of Tropical Ecology 24, 121–133, https://doi.org/10.1017/s0266467407004725 (2008).

    Article 

    Google Scholar 

  • Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology 16, 682–689, https://doi.org/10.1046/j.1365-2435.2002.00672.x (2002).

    Article 

    Google Scholar 

  • Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology 13, 611–622, https://doi.org/10.1046/j.1365-2435.1999.00359.x (1999).

    Article 

    Google Scholar 

  • McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: Empirical patterns and a theoretical explanation. Écoscience 6, 286–296, https://doi.org/10.1080/11956860.1999.11682529 (1999).

    Article 

    Google Scholar 

  • Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist 153, 359–364, https://doi.org/10.1046/j.0028-646x.2001.00320.x (2002).

    Article 

    Google Scholar 

  • Shipley, B. & Parent, M. Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth Rate. Functional Ecology 5, 111, https://doi.org/10.2307/2389561 (1991).

    Article 

    Google Scholar 

  • Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in40 wetland species. Écoscience 7, 183–194, https://doi.org/10.1080/11956860.2000.11682587 (2000).

    Article 

    Google Scholar 

  • Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist 143, 131–142, https://doi.org/10.1046/j.1469-8137.1999.00435.x (1999).

    Article 

    Google Scholar 

  • Meziane, D. & Shipley, B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment 22, 447–459, https://doi.org/10.1046/j.1365-3040.1999.00423.x (1999).

    Article 

    Google Scholar 

  • Shipley, B. Structured Interspecific Determinants of Specific Leaf Area in 34 Species of Herbaceous Angiosperms. Functional Ecology 9, 312, https://doi.org/10.2307/2390579 (1995).

    Article 

    Google Scholar 

  • Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20, 21–30, https://doi.org/10.1111/j.1365-2435.2006.01080.x (2006).

    Article 

    Google Scholar 

  • Vile, D. Significations fonctionnelle et ecologique des traits des especes vegetales: exemple dans une succession post-cultural mediterraneenne et generalisations PhD thesis, Université de Sherbrooke, Sherbrooke (Quebec), (2005).

  • Auger, S. L’importance de la variabilité interspécifique des traits fonctionnels par rapport à la variabilité intraspécifique chez les jeunes arbres en forêt mature Msc thesis, Université de Sherbrooke, Sherbrooke (Quebec) (2012).

  • Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science 24, 419–428, https://doi.org/10.1111/j.1654-1103.2012.01473.x (2012).

    Article 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences 110, 18180–18184, https://doi.org/10.1073/pnas.1310700110 (2013).

    Article 
    ADS 

    Google Scholar 

  • Elumeeva, T. G. et al. Long-term vegetation dynamic in the Northwestern Caucasus: which communities are more affected by upward shifts of plant species? Alpine Botany 123, 77–85, https://doi.org/10.1007/s00035-013-0122-7 (2013).

    Article 

    Google Scholar 

  • Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100, 652–661, https://doi.org/10.1111/j.1365-2745.2011.01945.x (2012).

    Article 

    Google Scholar 

  • Swaine, E. K. Ecological and evolutionary drivers of plant community assembly in a Bornean rain forest PhD thesis, University of Aberdeen, (2007).

  • Zheng, W. Silva Sinica: Volume 1-4. (China Forestry Publishing House, Beijing 1983).

  • Pan, Y., Cieraad, E. & van Bodegom, P. M. Are ecophysiological adaptive traits decoupled from leaf economics traits in wetlands. Functional Ecology 33, 1202–1210, https://doi.org/10.1111/1365-2435.13329 (2019).

    Article 

    Google Scholar 

  • Douma, J. C., Bardin, V., Bartholomeus, R. P. & van Bodegom, P. M. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Functional Ecology 26, 1355–1365, https://doi.org/10.1111/j.1365-2435.2012.02054.x (2012).

    Article 

    Google Scholar 

  • van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204, https://doi.org/10.1890/07-0390.1 (2008).

    Article 

    Google Scholar 

  • Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecology 185, 19–28, https://doi.org/10.1007/s11258-005-9080-5 (2006).

    Article 

    Google Scholar 

  • Bakker, C., Rodenburg, J. & Van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant and Soil 275, 111–122 (2005).

    Article 
    CAS 

    Google Scholar 

  • Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition PhD thesis, Ghent University, Ghent, Belgium, (2012).

  • Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563, https://doi.org/10.1111/j.0030-1299.2004.12597.x (2004).

    Article 

    Google Scholar 

  • Williams, M., Shimabokuro, Y. E. & Rastetter, E. B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil, Dataset. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA https://doi.org/10.3334/ORNLDAAC/1104 (2012).

    Article 

    Google Scholar 

  • Wirth, C. & Lichstein, J. W. in Old-Growth Forests 81–113 (Springer Berlin Heidelberg, 2009).

  • Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88, 964–977, https://doi.org/10.1046/j.1365-2745.2000.00506.x (2000).

    Article 

    Google Scholar 

  • McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology 17, 50–57, https://doi.org/10.1046/j.1365-2435.2003.00698.x (2003).

    Article 

    Google Scholar 

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827, https://doi.org/10.1038/nature02403 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wright, I. J. et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist 169, 309–319, https://doi.org/10.1111/j.1469-8137.2005.01590.x (2005).

    Article 
    CAS 

    Google Scholar 

  • Wright, I. J. et al. Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany 99, 1003–1015, https://doi.org/10.1093/aob/mcl066 (2006).

    Article 

    Google Scholar 

  • Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions. Functional Ecology 26, 1390–1398, https://doi.org/10.1111/1365-2435.12001 (2012).

    Article 

    Google Scholar 

  • Wright, S. J. et al. Functional traits and the growth-mortality tradeoff in tropical trees. Ecology, 100514035422098, https://doi.org/10.1890/09-2335 (2010).

  • Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecology Letters 14, 1117–1124, https://doi.org/10.1111/j.1461-0248.2011.01680.x (2011).

    Article 

    Google Scholar 

  • Zanne, A. E. et al. in Data from: Towards a worldwide wood economics spectrum. Dataset, https://doi.org/10.5061/dryad.234 (Dryad, 2009).

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).

    Article 

    Google Scholar 

  • Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99(2) 500–500 https://doi.org/10.1002/ecy.2091 (2018).

    Article 

    Google Scholar 

  • Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, https://doi.org/10.1186/1471-2105-14-16 (2013).

  • The Taxonomic Name Resolution Service [Internet]. iPlant Collaborative. Version 4.0 [Accessed: Sep 2015]. Available from: http://tnrs.iplantcollaborative.org.

  • Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. Journal of Vegetation Science 25, 967–977, https://doi.org/10.1111/jvs.12165 (2014).

    Article 

    Google Scholar 

  • Page, C. N. The ferns of Britain and Ireland. (Cambridge Univ. Press, 1997).

  • Lloyd, R. M. Spore morphology of the Hawaiian genus Sadleria (Blechnaceae). Am. Fern J. 66, 1–7 (1976).

    Article 

    Google Scholar 

  • Conway, E. Spore production in bracken (Pteridium aquilinum (L.) Kuhn). J. Ecol. 45, 273–284 (1957).

    Article 

    Google Scholar 

  • Stoor, A. M., Boudrie, M., Jéröme, C., Horn, K. & Bennert, H. W. Diphasiastrum oellgaardii (Lycopodiaceae, Pteridophyta), a new lycopod species from Central Europe and France. Feddes Repert. 107, 149–157 (1996).

    Article 

    Google Scholar 

  • Shan, H. et al. Trait prediction using hierarchical probabilistic matrix factorization. In J. Langford (Ed.) Proceedings of the International Conference for Machine Learning (ICML). Edinburgh: International Conference on Machine Learning, 1303–1310 (2012).

  • Fazayeli F, Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty Quantified Matrix Completion using Bayesian Hierarchical Matrix Factorization. 13th International Conference on Machine Learning and Applications (ICMLA), Detroit, USA December 3–6, https://doi.org/10.1109/ICMLA.2014.56 (2014).

  • Schrodt, F. et al. BHPMF – a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, https://doi.org/10.1111/geb.12335 (2015).

  • Díaz, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. TRY File Archive https://doi.org/10.17871/TRY.81 (2022).

  • New, M., Hulme, M. & Jones, P. Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology. Journal of Climate 12, 829–856, <a href="https://doi.org/10.1175/1520-0442(1999)0122.0.CO;2″>https://doi.org/10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 (1999).

  • Whittaker, R. J. Communities and Ecosystems. (Macmillan, 1975).

  • Weigelt, P., König, C. & Kreft, H. The Global Inventory of Floras and Traits (GIFT) database. Available: http://gift.uni-goettingen.de (2018).

  • Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. Journal of Biogeography 47(1) 16–43 https://doi.org/10.1111/jbi.13623 (2020)

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The evolutionary origin of avian facial bristles and the likely role of rictal bristles in feeding ecology

    Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis